Skip to main content
Log in

Gabor frames, unimodularity, and window decay

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study time-continuous Gabor frame generating window functions g satisfying decay properties in time and/or frequency with particular emphasis on rational time-frequency lattices. Specifically, we show under what conditions these decay properties of g are inherited by its minimal dual γ0 and by generalized duals γ. We consider compactly supported, exponentially decaying, and faster than exponentially decaying (i.e., decay like |g(t)|≤Ce−α|t| 1/α for some 1/2≤α<1) window functions. Particularly, we find that g and γ0 have better than exponential decay in both domains if and only if the associated Zibulski-Zeevi matrix is unimodular, i.e., its determinant is a constant. In the case of integer oversampling, unimodularity of the Zibulski-Zeevi matrix is equivalent to tightness of the underlying Gabor frame. For arbitrary oversampling, we furthermore consider tight Gabor frames canonically associated to window functions g satisfying certain decay properties. Here, we show under what conditions and to what extent the canonically associated tight frame inherits decay properties of g. Our proofs rely on the Zak transform, on the Zibulski-Zeevi representation of the Gabor frame operator, on a result by Jaffard, on a functional calculus for Gabor frame operators, on results from the theory of entire functions, and on the theory of polynomial matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastiaans, M.J. (1980). Gabor's expansion of a signal in Gaussian elementary signals,Proc. IEEE,68(1), 538–539, April.

    Article  Google Scholar 

  2. Benedetto, J.J. and Walnut, D.F. (1994). Gabor frames for L2 and related spaces. In Benedetto, J.J. and Frazier, M.W., Eds.,Wavelets: Mathematics and Applications, CRC Press, Boca Raton, FL, 97–162.

    Google Scholar 

  3. Boas, R.P. (1954).Entire Functions, Academic Press, New York.

    MATH  Google Scholar 

  4. Bölcskei, H. (1999). A necessary and sufficient condition for dual Weyl—Heisenberg frames to be compactly supported,J. Fourier Anal. Appl.,5(5), 409–419.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bölcskei, H. and Hlawatsch, F. (1997). Discrete Zak transforms, polyphase transforms, and applications,IEEE Trans. Signal Processing,45(4), 851–866, April.

    Article  Google Scholar 

  6. Casazza, P.G., Christensen, O., and Janssen, A.J.E.M. (1999). Weyl-Heisenberg frames, translation invariant systems and the Walnut representation, submitted toJ. Funct. Anal.

  7. Chen, C.T. (1984).Linear System Theory and Design, Oxford University Press, Oxford.

    Google Scholar 

  8. Daubechies, I. (1992).Ten Lectures on Wavelets, SIAM.

  9. Feichtinger, H.G. and Strohmer, T., Eds. (1998).Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, MA.

    MATH  Google Scholar 

  10. Gel'fand, I.M. and Shilov, G.E. (1967).Generalized Functions, Vol. 3, Academic Press, New York.

    MATH  Google Scholar 

  11. Gohberg, I., Lancaster, P., and Rodman, L. (1982).Matrix Polynomials, Academic Press, New York.

    MATH  Google Scholar 

  12. Heil, C.E. and Walnut, D.F. (1989). Continuous and discrete wavelet transforms,SIAM Rev.,41(4), 628–666, December.

    Article  MathSciNet  Google Scholar 

  13. Jaffard, S. (1990). Propriétés des matrices bien localisées près de leur diagonale et quelques applications,Ann. Inst. Henri Poincaré,7(5), 461–476.

    MATH  MathSciNet  Google Scholar 

  14. Janssen, A.J.E.M. (1982). Bargmann transform, Zak transform, and coherent states,J. Math. Phys.,23(5), 720–731.

    Article  MATH  MathSciNet  Google Scholar 

  15. Janssen, A.J.E.M. (1988). The Zak transform: A signal transform for sampled time-continuous signals,Philips J. Research,43(1), 23–69.

    MATH  MathSciNet  Google Scholar 

  16. Janssen, A.J.E.M. (1994). Signal analytic proofs of two basic results on lattice expansions,Appl. Comp. Harmonic Anal.,1, 350–354.

    Article  MATH  MathSciNet  Google Scholar 

  17. Janssen, A.J.E.M. (1995). On rationally oversampled Weyl-Heisenberg frames,Signal Processing,47, 239–245.

    Article  MATH  MathSciNet  Google Scholar 

  18. Janssen, A.J.E.M. (1996). Some Weyl-Heisenberg frame bound calculations,Indag. Math.,7(2), 165–183.

    Article  MATH  MathSciNet  Google Scholar 

  19. Janssen, A.J.E.M. (1998). The duality condition for Weyl-Heisenberg frames. In Feichtinger, H.G. and Strohmer, T., Eds.,Gabor Analysis and Algorithms: Theory and Applications, Birkhäuser, Boston, MA, 33–84.

    Google Scholar 

  20. Kailath, T. (1980).Linear Systems, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  21. Landau, H.J. (1993). On the density of phase-space expansions,IEEE Trans. Inf. Theory,39, 1152–1156.

    Article  MATH  Google Scholar 

  22. Del Prete, V. Rational oversampling for Gabor frames,J. Fourier Anal. Appl., submitted.

  23. Strohmer, T. (1998). Rates of convergence for the approximation of dual shift-invariant systems ofl 2(Z),J. Fourier Anal. Appl., submitted.

  24. Vaidyanathan, P.P. (1993).Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  25. Walnut, D.F. (1992). Continuity properties of the Gabor frame operator,J. Math. Anal. Appl.,165, 479–504.

    Article  MATH  MathSciNet  Google Scholar 

  26. Whittaker, E.T. and Watson, G.N. (1952).Modern Analysis, 4th ed. Cambridge University Press, Cambridge, MA.

    Google Scholar 

  27. Zibulski, M. and Zeevi, Y.Y. (1993). Oversampling in the Gabor scheme,IEEE. Trans. Signal Proc.,41(8), 2679–2687.

    Article  MATH  Google Scholar 

  28. Zibulski, M. and Zeevi, Y.Y. (1997). Analysis of multiwindow Gabor-type schemes by frame methods.Appl. Comp. Harmonic Anal.,4(2), 188–221, April.

    Article  MATH  MathSciNet  Google Scholar 

  29. Feichtinger, H.G. and Gröchenig, K. (1997). Gabor Frames and Time-Frequency Analysis of Distributions,J. Functional Anal.,146, 464–495.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by John Benedetto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bölcskei, H., Janssen, J.E.M. Gabor frames, unimodularity, and window decay. The Journal of Fourier Analysis and Applications 6, 255–276 (2000). https://doi.org/10.1007/BF02511155

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02511155

Math Subject Classifications

Key words and Phrases

Navigation