Skip to main content

Advertisement

Log in

Targeting Angiogenic Factors for the Treatment of Medulloblastoma

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Medulloblastoma (MB) is the most frequent pediatric brain tumor. Despite conventional therapy, MB patients have high mortality and morbidity rates mainly due to the incomplete understanding of the molecular and cellular processes involved in development of this cancer. Similar to other solid tumors, MB demonstrated high endothelial cell proliferation and angiogenic activity, wherein new blood vessels arise from the pre-existing vasculature, a process named angiogenesis. MB angiogenesis is considered a hallmark for MB development, progression, and metastasis emphasizing its potential target for antitumor therapy. However, angiogenesis is tightly regulated by a set of angiogenic factors making it a complex process to be targeted. Although agents targeting these factors and their receptors are early in development, the potential for their targeting may translate into improvement in the clinical care for MB patients. In this review, we focus on the most potent angiogenic factors and their corresponding receptors, highlighting their basic properties and expression in MB. We describe their contribution to MB tumorigenesis and angiogenesis and the potential therapeutic targeting of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schroeder K, Gururangan S. Molecular variants and mutations in medulloblastoma. Pharmacogenomics and personalized medicine. 2014;7:43–51.

    PubMed  PubMed Central  Google Scholar 

  2. Packer RJ, et al. Medulloblastoma: clinical and biologic aspects. Neuro Oncol. 1999;1(3):232–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kiltie AE, Lashford LS, Gattamaneni HR. survival and late effects in medulloblastoma patients treated with craniospinal irradiation under three years old. Med Pediatr Oncol. 1997;28(5):348–54.

    Article  CAS  PubMed  Google Scholar 

  4. Lee JW, et al. Promising survival rate but high incidence of treatment-related mortality after reduced-dose craniospinal radiotherapy and tandem high-dose chemotherapy in patients with high-risk medulloblastoma. Cancer Med. 2020;9(16):5807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Louis DN, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  6. •• Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol. 2020;73(5):243–9 This reference is of outstanding of importance because it provided a synopsis of the novel therapeutic approaches that specifically target medulloblastoma cancer stem cells to attain enhanced anti-tumorous effects an overcome therapy resistance.

    Article  CAS  PubMed  Google Scholar 

  7. Hammoud H, et al. Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol. 2020;22(1):6.

    Article  PubMed  Google Scholar 

  8. Phoenix TN, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell. 2016;29(4):508–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gilhuis HJ, et al. Three-dimensional (3D) reconstruction and quantitative analysis of the microvasculature in medulloblastoma and ependymoma subtypes. Angiogenesis. 2006;9(4):201–8.

    Article  PubMed  Google Scholar 

  10. Ozer E, et al. Prognostic significance of anaplasia and angiogenesis in childhood medulloblastoma: a pediatric oncology group study. Pathol Res Pract. 2004;200(7-8):501–9.

    Article  PubMed  Google Scholar 

  11. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15–8.

    Article  CAS  PubMed  Google Scholar 

  12. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  13. • Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences. 2020;77(9):1745–70 This reference is of importance because it discussed the current understanding of cellualr and molecular mechanisms invovled in tumor angiogenesis and highlighted challenges and opportunities associated with vascular targeting.

    Article  CAS  PubMed  Google Scholar 

  14. Huber H, et al. Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas. Eur J Cancer. 2001;37(16):2064–72.

    Article  CAS  PubMed  Google Scholar 

  15. Houck KA, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol. 1991;5(12):1806–14.

    Article  CAS  PubMed  Google Scholar 

  16. Leung DW, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Eriksson U. Novel VEGF family members: VEGF-B, VEGF-C and VEGF-D. Int J Biochem Cell Biol. 2001;33(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  18. Maglione D, et al. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A. 1991;88(20):9267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lyttle DJ, et al. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol. 1994;68(1):84–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takahashi H, et al. A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J Biol Chem. 2004;279(44):46304–14.

    Article  CAS  PubMed  Google Scholar 

  21. Soker S, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998;92(6):735–45.

    Article  CAS  PubMed  Google Scholar 

  22. Plate KH, et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359(6398):845–8.

    Article  CAS  PubMed  Google Scholar 

  23. Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. ScientificWorldJournal. 2013;2013:417413.

    PubMed  PubMed Central  Google Scholar 

  24. Pan W, et al. TSP2 acts as a suppresser of cell invasion, migration and angiogenesis in medulloblastoma by inhibiting the Notch signaling pathway. Brain Res. 2019;1718:223–30.

    Article  CAS  PubMed  Google Scholar 

  25. Gao Y, et al. Expression levels of vascular endothelial cell growth factor and microRNA-210 are increased in medulloblastoma and metastatic medulloblastoma. Exp Ther Med. 2015;10(6):2138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pavlakovic H, et al. Quantification of angiogenesis stimulators in children with solid malignancies. Int J Cancer. 2001;92(5):756–60.

    Article  CAS  PubMed  Google Scholar 

  27. Sandén E, et al. Preoperative systemic levels of VEGFA, IL-7, IL-17A, and TNF-β delineate two distinct groups of children with brain tumors. Pediatr Blood Cancer. 2016;63(12):2112–22.

    Article  PubMed  CAS  Google Scholar 

  28. Thompson EM, et al. The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro Oncol. 2017;19(9):1217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Snuderl M, et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell. 2013;152(5):1065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Slongo ML, et al. Functional VEGF and VEGF receptors are expressed in human medulloblastomas. Neuro Oncol. 2007;9(4):384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang D, et al. Microscopic delineation of medulloblastoma margins in a transgenic mouse model using a topically applied VEGFR-1 probe. Transl Oncol. 2012;5(6):408–14.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Virág J, et al. Angiogenesis and angiogenic tyrosine kinase receptor expression in pediatric brain tumors. Pathol Oncol Res. 2014;20(2):417–26.

    Article  PubMed  CAS  Google Scholar 

  33. Lin W, et al. A deregulated integrated stress response promotes interferon-γ-induced medulloblastoma. J Neurosci Res. 2011;89(10):1586–95.

    Article  CAS  PubMed  Google Scholar 

  34. Jamison S, Lin Y, Lin W. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A. PLoS One. 2015;10(3):e0120252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. •• Korshunov A, et al. Integrated molecular analysis of adult Sonic Hedgehog (SHH)-activated medulloblastomas reveals two clinically relevant tumor subsets with VEGFA as potent prognostic indicator. Neuro Oncol. 2021;23(9):1576–85 This reference of outstanding of importance because it identified potential molecular subcategories of MBSHH with VEGFA as a potent molecular marker which may be used to improve patient stratification.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yao X, Xie L, Zeng Y. MiR-9 promotes angiogenesis via targeting on Sphingosine-1- phosphate receptor 1. Front Cell Dev Biol. 2020;8:755.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Penco-Campillo M, et al. VEGFC negatively regulates the growth and aggressiveness of medulloblastoma cells. Commun Biol. 2020;3(1):579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barthomeuf C, et al. Inhibition of sphingosine-1-phosphate- and vascular endothelial growth factor-induced endothelial cell chemotaxis by red grape skin polyphenols correlates with a decrease in early platelet-activating factor synthesis. Free Radic Biol Med. 2006;40(4):581–90.

    Article  CAS  PubMed  Google Scholar 

  39. Craveiro RB, et al. In comparative analysis of multi-kinase inhibitors for targeted medulloblastoma therapy pazopanib exhibits promising in vitro and in vivo efficacy. Oncotarget. 2014;5(16):7149–61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ehrhardt M, et al. The FDA approved PI3K inhibitor GDC-0941 enhances in vitro the anti-neoplastic efficacy of Axitinib against c-myc-amplified high-risk medulloblastoma. J Cell Mol Med. 2018;22(4):2153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meco D, et al. Dual inhibitor AEE788 reduces tumor growth in preclinical models of medulloblastoma. Transl Oncol. 2010;3(5):326–35.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Loureiro RM, et al. ErbB2 overexpression in mammary cells upregulates VEGF through the core promoter. Biochem Biophys Res Commun. 2005;326(2):455–65.

    Article  CAS  PubMed  Google Scholar 

  43. Shi W, et al. Itraconazole side chain analogues: structure-activity relationship studies for inhibition of endothelial cell proliferation, vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, and hedgehog signaling. J Med Chem. 2011;54(20):7363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bai RY, et al. Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro Oncol. 2015;17(4):545–54.

    Article  CAS  PubMed  Google Scholar 

  45. Calabrese C, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  46. Xian CJ. Roles of epidermal growth factor family in the regulation of postnatal somatic growth. Endocr Rev. 2007;28(3):284–96.

    Article  CAS  PubMed  Google Scholar 

  47. Zeng F, Harris RC. Epidermal growth factor, from gene organization to bedside. Seminars in cell & developmental biology. 2014;28:2–11.

    Article  CAS  Google Scholar 

  48. Ferguson KM, et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell. 2003;11(2):507–17.

    Article  CAS  PubMed  Google Scholar 

  49. Fox SB, et al. Tumor angiogenesis in node-negative breast carcinomas—relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat. 1994;29(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  50. Goldman CK, et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Molecular biology of the cell. 1993;4(1):121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trojan L, et al. Expression of pro-angiogenic growth factors VEGF, EGF and bFGF and their topographical relation to neovascularisation in prostate cancer. Urol Res. 2004;32(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  52. Schönholzer MT, et al. Real-time sensing of MAPK signaling in medulloblastoma cells reveals cellular evasion mechanism counteracting dasatinib blockade of ERK activation during invasion. Neoplasia. 2020;22(10):470–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. • Maroufy V, et al. Gene expression dynamic analysis reveals co-activation of Sonic Hedgehog and epidermal growth factor followed by dynamic silencing. Oncotarget. 2020;11(15):1358–72 This reference is of importance because it provided in silico and in vito analysis of the cross talk between SHH and FGF pathways to affect the dynamic activity of gene population in MB.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gilbertson RJ, et al. Expression of the ErbB-neuregulin signaling network during human cerebellar development: implications for the biology of medulloblastoma. Cancer Res. 1998;58(17):3932–41.

    CAS  PubMed  Google Scholar 

  55. Castellino RC, et al. Heterozygosity for Pten promotes tumorigenesis in a mouse model of medulloblastoma. PLoS One. 2010;5(5):e10849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Patereli A, et al. Expression of epidermal growth factor receptor and HER-2 in pediatric embryonal brain tumors. Pediatr Neurosurg. 2010;46(3):188–92.

    Article  PubMed  Google Scholar 

  57. Meurer RT, et al. Immunohistochemical expression of markers Ki-67, neun, synaptophysin, p53 and HER2 in medulloblastoma and its correlation with clinicopathological parameters. Arq Neuropsiquiatr. 2008;66(2b):385–90.

    Article  PubMed  Google Scholar 

  58. Das P, et al. Medulloblastomas: a correlative study of MIB-1 proliferation index along with expression of c-Myc, ERBB2, and anti-apoptotic proteins along with histological typing and clinical outcome. Childs Nerv Syst. 2009;25(7):825–35.

    Article  PubMed  Google Scholar 

  59. Liu W, et al. A prognostic analysis of pediatrics central nervous system small cell tumors: evaluation of EGFR family gene amplification and overexpression. Diagn Pathol. 2014;9:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gilbertson RJ, et al. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res. 1997;57(15):3272–80.

    CAS  PubMed  Google Scholar 

  61. Bodey B, Kaiser HE, Siegel SE. Epidermal growth factor receptor (EGFR) expression in childhood brain tumors. In Vivo. 2005;19(5):931–41.

    CAS  PubMed  Google Scholar 

  62. Gilbertson R, et al. Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosomes Cancer. 2001;31(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  63. Korshunov A, et al. Prognostic value of tumor-associated antigens immunoreactivity and apoptosis in medulloblastomas. An analysis of 73 cases. Brain Tumor Pathol. 1999;16(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  64. Min HS, et al. Medulloblastoma: histopathologic and molecular markers of anaplasia and biologic behavior. Acta Neuropathol. 2006;112(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  65. Moscatello DK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 1995;55(23):5536–9.

    CAS  PubMed  Google Scholar 

  66. Rico-Varela J, et al. EGF as a new therapeutic target for medulloblastoma metastasis. Cell Mol Bioeng. 2015;8(4):553–65.

    Article  CAS  PubMed  Google Scholar 

  67. Endersby R, et al. A pre-clinical assessment of the pan-ERBB inhibitor dacomitinib in pediatric and adult brain tumors. Neoplasia. 2018;20(5):432–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wolle D, et al. Inhibition of epidermal growth factor signaling by the cardiac glycoside ouabain in medulloblastoma. Cancer Med. 2014;3(5):1146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meco D, et al. Antitumor effect in medulloblastoma cells by gefitinib: Ectopic HER2 overexpression enhances gefitinib effects in vivo. Neuro Oncol. 2009;11(3):250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Klagsbrun M. The fibroblast growth factor family: structural and biological properties. Prog Growth Factor Res. 1989;1(4):207–35.

    Article  CAS  PubMed  Google Scholar 

  71. Alam R, et al. New insights into the role of fibroblast growth factors in Alzheimer's disease. Mol Biol Rep. 2021.

  72. Abraham JA, et al. Human basic fibroblast growth factor: nucleotide sequence and genomic organization. The EMBO journal. 1986;5(10):2523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41.

    CAS  PubMed  Google Scholar 

  75. •• Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016;7:10262 This reference of outstanding of importance because it provided experimental analysis for the existence of multiple activity ligand-bound states for FGFR, and suggested a new molecular mechanism through which FGF-linked pathologies can arise.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lamothe B, et al. The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol Cell Biol. 2004;24(13):5657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee BJ, et al. Ocular biometric features of pediatric patients with fibroblast growth factor receptor-related syndromic craniosynostosis. Sci Rep. 2021;11(1):6172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Larsson SC, Gill D. Genetic evidence supporting fibroblast growth factor 21 signalling as a pharmacological target for cardiometabolic outcomes and Alzheimer's disease. Nutrients. 2021;13(5).

  79. Salgia R. Fibroblast growth factor signaling and inhibition in non-small cell lung cancer and their role in squamous cell tumors. Cancer Med. 2014;3(3):681–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rand V, et al. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci U S A. 2005;102(40):14344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu YL, et al. An acidic fibroblast growth factor protein generated by alternate splicing acts like an antagonist. J Exp Med. 1992;175(4):1073–80.

    Article  CAS  PubMed  Google Scholar 

  82. Burgess WH, et al. Possible dissociation of the heparin-binding and mitogenic activities of heparin-binding (acidic fibroblast) growth factor-1 from its receptor-binding activities by site-directed mutagenesis of a single lysine residue. J Cell Biol. 1990;111(5 Pt 1):2129–38.

    Article  CAS  PubMed  Google Scholar 

  83. Santhana Kumar K, et al. TGF-β determines the pro-migratory potential of bFGF signaling in medulloblastoma. Cell Rep. 2018;23(13):3798–3812.e8.

    Article  CAS  PubMed  Google Scholar 

  84. Brem S, et al. Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer. 1992;70(11):2673–80.

    Article  CAS  PubMed  Google Scholar 

  85. • Yabut OR, et al. Aberrant FGF signaling promotes granule neuron precursor expansion in SHH subgroup infantile medulloblastoma. bioRxiv. 2021:2021.06.23.449636 This reference of importance because it identified unique and high expression of FGF5 in MBSHH patients which may be useful as a diagnostic biomarker and to test drugs specifically targeting FGF signaling in MB.

  86. Duplan SM, Théorêt Y, Kenigsberg RL. Antitumor activity of fibroblast growth factors (FGFs) for medulloblastoma may correlate with FGF receptor expression and tumor variant. Clin Cancer Res. 2002;8(1):246–57.

    CAS  PubMed  Google Scholar 

  87. Zomerman WW, et al. Exogenous HGF bypasses the effects of ErbB inhibition on tumor cell viability in medulloblastoma cell lines. PLoS One. 2015;10(10):e0141381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Pomeroy SL, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415(6870):436–42.

    Article  CAS  PubMed  Google Scholar 

  89. Kenigsberg RL, et al. Effects of basic fibroblast growth factor on the differentiation, growth, and viability of a new human medulloblastoma cell line (UM-MB1). Am J Pathol. 1997;151(3):867–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vachon P, Girard C, Théorêt Y. Effects of basic fibroblastic growth factor on the growth of human medulloblastoma xenografts. J Neurooncol. 2004;67(1-2):139–46.

    Article  PubMed  Google Scholar 

  91. Emmenegger BA, et al. Distinct roles for fibroblast growth factor signaling in cerebellar development and medulloblastoma. Oncogene. 2013;32(35):4181–8.

    Article  CAS  PubMed  Google Scholar 

  92. Fogarty MP, et al. Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci U S A. 2007;104(8):2973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. • Holzhauser S, et al. Targeting fibroblast growth factor receptor (FGFR) and phosphoinositide 3-kinase (PI3K) signaling pathways in medulloblastoma cell lines. Anticancer Res. 2020;40(1):53–66 This reference of importance because it clearly highlighted the beneficial effect of combined treatment with FGFR and PIK3 inhibitors especially in the most resistant MB cell line.

    Article  PubMed  CAS  Google Scholar 

  94. Allen E, Walters IB, Hanahan D. Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011;17(16):5299–310.

    Article  CAS  Google Scholar 

  95. Wang L, et al. A novel monoclonal antibody to fibroblast growth factor 2 effectively inhibits growth of hepatocellular carcinoma xenografts. Molecular cancer therapeutics. 2012;11(4):864–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao G, et al. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther. 2011;10(11):2200–10.

    Article  CAS  PubMed  Google Scholar 

  97. Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 2004;15(4):197–204.

    Article  CAS  PubMed  Google Scholar 

  98. Erlandsson A, Enarsson M, Forsberg-Nilsson K. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci. 2001;21(10):3483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Smits A, Ballagi AE, Funa K. PDGF-BB exerts trophic activity on cultured GABA interneurons from the newborn rat cerebellum. Eur J Neurosci. 1993;5(8):986–94.

    Article  CAS  PubMed  Google Scholar 

  100. Williams BP, et al. A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron. 1997;18(4):553–62.

    Article  CAS  PubMed  Google Scholar 

  101. Li WL, et al. Platelet derived growth factor receptor alpha is essential for establishing a microenvironment that supports definitive erythropoiesis. J Biochem. 2006;140(2):267–73.

    Article  CAS  PubMed  Google Scholar 

  102. Oikawa T, et al. Three isoforms of platelet-derived growth factors all have the capability to induce angiogenesis in vivo. Biol Pharm Bull. 1994;17(12):1686–8.

    Article  CAS  PubMed  Google Scholar 

  103. Risau W, et al. Platelet-derived growth factor is angiogenic in vivo. Growth Factors. 1992;7(4):261–6.

    Article  CAS  PubMed  Google Scholar 

  104. Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol. 2014;9(2):168–81.

    Article  PubMed  Google Scholar 

  105. Lange S, et al. Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovascular Research. 2008;81(1):159–68.

    Article  PubMed  CAS  Google Scholar 

  106. Laschke MW, et al. Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Hum Reprod. 2006;21(1):262–8.

    Article  CAS  PubMed  Google Scholar 

  107. Magnusson PU, et al. Platelet-derived growth factor receptor-beta constitutive activity promotes angiogenesis in vivo and in vitro. Arterioscler Thromb Vasc Biol. 2007;27(10):2142–9.

    Article  CAS  PubMed  Google Scholar 

  108. Fujimoto K, et al. Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis. Eur J Cancer. 1998;34(9):1439–47.

    Article  CAS  PubMed  Google Scholar 

  109. Li C, et al. Microvessel density and expression of vascular endothelial growth factor, basic fibroblast growth factor, and platelet-derived endothelial growth factor in oral squamous cell carcinomas. Int J Oral Maxillofac Surg. 2005;34(5):559–65.

    Article  CAS  PubMed  Google Scholar 

  110. Saeki T, et al. Correlation between expression of platelet-derived endothelial cell growth factor (thymidine phosphorylase) and microvessel density in early-stage human colon carcinomas. Jpn J Clin Oncol. 1997;27(4):227–30.

    Article  CAS  PubMed  Google Scholar 

  111. Raica M, Cimpean AM. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals (Basel). 2010;3(3):572–99.

    Article  CAS  Google Scholar 

  112. Whelan HT, et al. Medulloblastoma cell line secretes platelet-derived growth factor. Pediatr Neurol. 1989;5(6):347–52.

    Article  CAS  PubMed  Google Scholar 

  113. Andrae J, et al. Platelet-derived growth factor-B and -C and active alpha-receptors in medulloblastoma cells. Biochem Biophys Res Commun. 2002;296(3):604–11.

    Article  CAS  PubMed  Google Scholar 

  114. LaRochelle WJ, et al. Platelet-derived growth factor D: tumorigenicity in mice and dysregulated expression in human cancer. Cancer Res. 2002;62(9):2468–73.

    CAS  PubMed  Google Scholar 

  115. Nakamura T, et al. Expression of the B-chain of platelet-derived growth factor and proliferative activity of human brain tumors. Neurol Med Chir (Tokyo). 1993;33(4):205–11.

    Article  CAS  Google Scholar 

  116. Faria CC, et al. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma. Cancer Res. 2015;75(1):134–46.

    Article  CAS  PubMed  Google Scholar 

  117. Blom T, et al. Amplification and overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas and primitive neuroectodermal tumors. J Neurooncol. 2010;97(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  118. Smits A, et al. Coexpression of platelet-derived growth factor alpha and beta receptors on medulloblastomas and other primitive neuroectodermal tumors is consistent with an immature stem cell and neuronal derivation. Lab Invest. 1996;74(1):188–98.

    CAS  PubMed  Google Scholar 

  119. MacDonald TJ, et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet. 2001;29(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  120. Gilbertson RJ, Clifford SC. PDGFRB is overexpressed in metastatic medulloblastoma. Nat Genet. 2003;35(3):197–8.

    Article  CAS  PubMed  Google Scholar 

  121. Abouantoun TJ, Castellino RC, MacDonald TJ. Sunitinib induces PTEN expression and inhibits PDGFR signaling and migration of medulloblastoma cells. J Neurooncol. 2011;101(2):215–26.

    Article  CAS  PubMed  Google Scholar 

  122. Abouantoun TJ, MacDonald TJ. Imatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor. Mol Cancer Ther. 2009;8(5):1137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ohshima-Hosoyama S, et al. Preclinical testing of tandutinib in a transgenic medulloblastoma mouse model. J Pediatr Hematol Oncol. 2012;34(2):116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Daudigeos-Dubus E, et al. Regorafenib: Antitumor Activity upon Mono and Combination Therapy in Preclinical Pediatric Malignancy Models. PLoS One. 2015;10(11):e0142612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Tian Z, et al. Cambogin is preferentially cytotoxic to cells expressing PDGFR. PLoS One. 2011;6(6):e21370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang F, et al. A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. Oncotarget. 2015;6(5):2709–24.

    Article  PubMed  Google Scholar 

  127. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998;8(10):404–10.

    Article  CAS  PubMed  Google Scholar 

  128. Matsumoto K, Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. J Biochem. 1996;119(4):591–600.

    Article  CAS  PubMed  Google Scholar 

  129. Boccaccio C, et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature. 1998;391(6664):285–8.

    Article  CAS  PubMed  Google Scholar 

  130. Maroun CR, et al. The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol. 1999;19(3):1784–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ponzetto C, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.

    Article  CAS  PubMed  Google Scholar 

  132. Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-Oncology. 2005;7(4):436–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  CAS  PubMed  Google Scholar 

  134. Koochekpour S, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res. 1997;57(23):5391–8.

    CAS  PubMed  Google Scholar 

  135. Moriyama T, et al. Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in humans. Cancer Lett. 1998;124(2):149–55.

    Article  CAS  PubMed  Google Scholar 

  136. Rosen EM, et al. Scatter factor expression and regulation in human glial tumors. Int J Cancer. 1996;67(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  137. Li Y, et al. The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res. 2005;65(20):9355–62.

    Article  CAS  PubMed  Google Scholar 

  138. Onvani S, et al. Molecular genetic analysis of the hepatocyte growth factor/MET signaling pathway in pediatric medulloblastoma. Genes Chromosomes Cancer. 2012;51(7):675–88.

    Article  CAS  PubMed  Google Scholar 

  139. Kongkham PN, et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 2008;68(23):9945–53.

    Article  CAS  PubMed  Google Scholar 

  140. Provençal M, et al. Tissue factor mediates the HGF/Met-induced anti-apoptotic pathway in DAOY medulloblastoma cells. J Neurooncol. 2010;97(3):365–72.

    Article  PubMed  CAS  Google Scholar 

  141. Provençal M, et al. c-Met activation in medulloblastoma induces tissue factor expression and activity: effects on cell migration. Carcinogenesis. 2009;30(7):1089–96.

    Article  PubMed  CAS  Google Scholar 

  142. Guessous F, et al. An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med Chem. 2010;10(1):28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kongkham PN, et al. Inhibition of the MET receptor tyrosine kinase as a novel therapeutic strategy in medulloblastoma. Transl Oncol. 2010;3(6):336–43.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhang Y, et al. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition. Clin Cancer Res. 2013;19(6):1433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guessous F, et al. Cooperation between c-Met and focal adhesion kinase family members in medulloblastoma and implications for therapy. Mol Cancer Ther. 2012;11(2):288–97.

    Article  CAS  PubMed  Google Scholar 

  146. Labbé D, et al. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr. 2009;139(4):646–52.

    Article  PubMed  CAS  Google Scholar 

  147. Ruegg C, Alghisi GC. Vascular integrins: therapeutic and imaging targets of tumor angiogenesis. Recent Results Cancer Res. 2010;180:83–101.

    Article  CAS  PubMed  Google Scholar 

  148. MacDonald TJ, et al. Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist. Neurosurgery. 2001;48(1):151–7.

    CAS  PubMed  Google Scholar 

  149. Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48(4):549–54.

    Article  CAS  PubMed  Google Scholar 

  150. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264(5158):569–71.

    Article  CAS  PubMed  Google Scholar 

  151. Taga T, et al. alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer. 2002;98(5):690–7.

    Article  CAS  PubMed  Google Scholar 

  152. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 2002;94(4):252–66.

    Article  CAS  PubMed  Google Scholar 

  153. Baryawno N, et al. Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro Oncol. 2008;10(5):661–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. •• Haibe Y, et al. Resistance mechanisms to anti-angiogenic therapies in cancer. Frontiers in Oncology. 2020;10(221) This reference is of outstanding of importance because it clearly explained preclinical evidence for the various mechanisms of resistance to anti-angiogenic therapies and the novel therapeutic approaches to overcome them in cancer.

  155. El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br J Pharmacol. 2013;170(4):712–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Grotzer MA, et al. High microvessel density in primitive neuroectodermal brain tumors of childhood. Neuropediatrics. 2001;32(2):75–9.

    Article  CAS  PubMed  Google Scholar 

  157. Zhao M, et al. Bevacizumab and stereotactic radiosurgery achieved complete response for pediatric recurrent medulloblastoma. J Cancer Res Ther. 2018;14(Supplement):S789–s792.

    PubMed  Google Scholar 

  158. Bonney PA, et al. Dramatic response to temozolomide, irinotecan, and bevacizumab for recurrent medulloblastoma with widespread osseous metastases. J Clin Neurosci. 2016;26:161–3.

    Article  CAS  PubMed  Google Scholar 

  159. Aguilera D, et al. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: a multi-institutional experience. Child's Nervous System. 2013;29(4):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Okada K, et al. Phase I study of Bevacizumab plus irinotecan in pediatric patients with recurrent/refractory solid tumors. Japanese Journal of Clinical Oncology. 2013;43(11):1073–9.

    Article  PubMed  Google Scholar 

  161. Metts J, et al. A phase I study of irinotecan and temozolomide with bevacizumab in children with recurrent/refractory central nervous system tumors. Child's Nervous System. 2022.

  162. Han K, et al. Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation. Br J Clin Pharmacol. 2016;81(1):148–60.

    Article  CAS  PubMed  Google Scholar 

  163. Fangusaro J, et al. Bevacizumab (BVZ)-associated toxicities in children with recurrent central nervous system tumors treated with BVZ and irinotecan (CPT-11): a Pediatric Brain Tumor Consortium Study (PBTC-022). Cancer. 2013;119(23):4180–7.

    Article  CAS  PubMed  Google Scholar 

  164. Levy AS, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr Blood Cancer. 2021;68(8):e29031.

    Article  CAS  PubMed  Google Scholar 

  165. Piha-Paul SA, et al. Pediatric patients with refractory central nervous system tumors: experiences of a clinical trial combining bevacizumab and temsirolimus. Anticancer Res. 2014;34(4):1939–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Elice F, Rodeghiero F. Side effects of anti-angiogenic drugs. Thromb Res. 2012;129(Suppl 1):S50–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not funded.

Author information

Authors and Affiliations

Authors

Contributions

Z. Saker and S. Nabha conceived the concept and idea of the present review. Z. Saker, M. Rizk and S. Nabha worked on the study design strategy and selected the topics to be discussed. Z. Saker, M. Rizk, and H. Bahmad did literature searches and screened titles and abstracts for relevance. Z. Saker and M. Rizk abstracted the data from the eligible full text articles, analyzed, and interpreted the data and drafted the manuscript. H. Bahmad and S. Nabha critically revised the manuscript. All authors have read and approved the final draft.

Corresponding authors

Correspondence to Hisham F. Bahmad MD, MSc or Sanaa M. Nabha PhD.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

Zahraa Saker declares that she has no conflict of interest. Mahdi Rizk declares that he has no conflict of interest. Hisham F. Bahmad declares that he has no conflict of interest. Sanaa M. Nabha declares that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saker, Z., Rizk, M., Bahmad, H.F. et al. Targeting Angiogenic Factors for the Treatment of Medulloblastoma. Curr. Treat. Options in Oncol. 23, 864–886 (2022). https://doi.org/10.1007/s11864-022-00981-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-022-00981-1

Keywords

Navigation