Skip to main content

Advertisement

Log in

Adaptation to antiangiogenic therapy in neurological tumors

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Because tumors require a vascular supply for their survival and growth, angiogenesis is considered an important therapeutic target in most human cancers including cancer of the central nervous system. Antiangiogenic therapy has focused on inhibitors of the vascular endothelial growth factor (VEGF) signaling pathway. VEGF pathway-targeted drugs have shown therapeutic efficacy in several CNS tumors and have been tried most frequently in glioblastoma. These therapies, however, have been less effective than anticipated as some patients do not respond to therapy and some receive only modest benefit. Underlying this suboptimal response are multiple mechanisms of drug resistance involving changes in both tumor cells and their microenvironment. In this review, we discuss the multiple proposed mechanisms by which neurological tumors evolve to become resistant to antiangiogenic therapies. A better understanding of these mechanisms, their context, and their interplay will likely facilitate improvements in pharmacological strategies for the targeted treatment of neurological tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bottsford-Miller JN, Coleman RL, Sood AK (2012) Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol Off J Am Soc Clin Oncol 30:4026–4034. doi:10.1200/JCO.2012.41.9242

    Article  CAS  Google Scholar 

  2. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603. doi:10.1038/nrc2442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Nunes FP, Merker VL, Jennings D et al (2013) Bevacizumab treatment for meningiomas in NF2: a retrospective analysis of 15 patients. PLoS One 8:e59941. doi:10.1371/journal.pone.0059941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chamberlain MC (2011) Bevacizumab for the treatment of recurrent glioblastoma. Clin Med Insights Oncol 5:117–129. doi:10.4137/CMO.S7232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478. doi:10.1038/nrm2183

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  7. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19:329–337. doi:10.1016/j.semcancer.2009.05.003

    Article  CAS  PubMed  Google Scholar 

  8. Moens S, Goveia J, Stapor PC et al (2014) The multifaceted activity of VEGF in angiogenesis—implications for therapy responses. Cytokine Growth Factor Rev 25:473–482. doi:10.1016/j.cytogfr.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  9. Hoeben A, Landuyt B, Highley MS et al (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56:549–580. doi:10.1124/pr.56.4.3

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703. doi:10.1016/j.cell.2007.06.054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bello L, Giussani C, Carrabba G et al (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi N, Allen N, Clendenon NR, Ko LW (1980) An improved rat brain-tumor model. J Neurosurg 53:808–815. doi:10.3171/jns.1980.53.6.0808

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  14. Cea V, Sala C, Verpelli C (2012) Antiangiogenic therapy for glioma. J Signal Transduct 2012:e483040. doi:10.1155/2012/483040

    Article  Google Scholar 

  15. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848. doi:10.1038/359845a0

    Article  CAS  PubMed  Google Scholar 

  16. Lucio-Eterovic AK, Piao Y, de Groot JF (2009) Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res Off J Am Assoc Cancer Res 15:4589–4599. doi:10.1158/1078-0432.CCR-09-0575

    Article  CAS  Google Scholar 

  17. Karcher S, Steiner H-H, Ahmadi R et al (2006) Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer J Int Cancer 118:2182–2189. doi:10.1002/ijc.21648

    Article  CAS  Google Scholar 

  18. Cook KM, Figg WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60:222–243. doi:10.3322/caac.20075

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lakka SS, Rao JS (2008) Antiangiogenic therapy in brain tumors. Expert Rev Neurother 8:1457–1473. doi:10.1586/14737175.8.10.1457

    Article  PubMed Central  PubMed  Google Scholar 

  20. Valter MM, Wiestler OD, Pietsche T, Pietsch T (1999) Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF. Int J Dev Neurosci Off J Int Soc Dev Neurosci 17:565–577

    Article  CAS  Google Scholar 

  21. Berkman RA, Merrill MJ, Reinhold WC et al (1993) Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91:153–159. doi:10.1172/JCI116165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Koutsimpelas D, Stripf T, Heinrich UR et al (2007) Expression of vascular endothelial growth factor and basic fibroblast growth factor in sporadic vestibular schwannomas correlates to growth characteristics. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol 28:1094–1099. doi:10.1097/MAO.0b013e31814b2787

    Article  Google Scholar 

  23. Rosen LS (2002) Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control J Moffitt Cancer Cent 9:36–44

    Google Scholar 

  24. Vasudev NS, Reynolds AR (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17:471–494. doi:10.1007/s10456-014-9420-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Reardon DA, Turner S, Peters KB et al (2011) A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Cancer Netw JNCCN 9:414–427

    CAS  PubMed  Google Scholar 

  26. Zustovich F, Landi L, Lombardi G et al (2013) Sorafenib plus daily low-dose temozolomide for relapsed glioblastoma: a phase II study. Anticancer Res 33:3487–3494

    CAS  PubMed  Google Scholar 

  27. Rigamonti N, Kadioglu E, Keklikoglou I et al (2014) Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep 8:696–706. doi:10.1016/j.celrep.2014.06.059

    Article  CAS  PubMed  Google Scholar 

  28. Herbst RS, Hong D, Chap L et al (2009) Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol Off J Am Soc Clin Oncol 27:3557–3565. doi:10.1200/JCO.2008.19.6683

    Article  CAS  Google Scholar 

  29. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22. doi:10.1038/nrc2748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Reardon DA (2014) Update on the use of angiogenesis inhibitors in adult patients with brain tumors. Clin Adv Hematol Oncol HO 12:293–303

    Google Scholar 

  31. Norden AD, Drappatz J, Muzikansky A et al (2009) An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 92:149–155. doi:10.1007/s11060-008-9745-8

    Article  CAS  PubMed  Google Scholar 

  32. Xu T, Chen J, Lu Y, Wolff JE (2010) Effects of bevacizumab plus irinotecan on response and survival in patients with recurrent malignant glioma: a systematic review and survival-gain analysis. BMC Cancer 10:252. doi:10.1186/1471-2407-10-252

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. De Groot JF, Lamborn KR, Chang SM et al (2011) Phase II study of aflibercept in recurrent malignant glioma: a North American Brain Tumor Consortium study. J Clin Oncol Off J Am Soc Clin Oncol 29:2689–2695. doi:10.1200/JCO.2010.34.1636

    Article  CAS  Google Scholar 

  34. Lau D, Magill ST, Aghi MK (2014) Molecularly targeted therapies for recurrent glioblastoma: current and future targets. Neurosurg Focus 37:E15. doi:10.3171/2014.9.FOCUS14519

    Article  PubMed  Google Scholar 

  35. Deng Y, Feng W, Wu J et al (2014) The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer. Mol Clin Oncol 2:116–120. doi:10.3892/mco.2013.190

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Raizer JJ, Abrey LE, Lassman AB et al (2010) A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 12:95–103. doi:10.1093/neuonc/nop015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yung WKA, Vredenburgh JJ, Cloughesy TF et al (2010) Safety and efficacy of erlotinib in first-relapse glioblastoma: a phase II open-label study. Neuro-Oncol 12:1061–1070. doi:10.1093/neuonc/noq072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Van den Bent MJ, Brandes AA, Rampling R et al (2009) Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol Off J Am Soc Clin Oncol 27:1268–1274. doi:10.1200/JCO.2008.17.5984

    Article  CAS  Google Scholar 

  39. Chow LQM, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol Off J Am Soc Clin Oncol 25:884–896. doi:10.1200/JCO.2006.06.3602

    Article  CAS  Google Scholar 

  40. De Boüard S, Herlin P, Christensen JG et al (2007) Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro-Oncol 9:412–423. doi:10.1215/15228517-2007-024

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Kreisl TN, Smith P, Sul J et al (2013) Continuous daily sunitinib for recurrent glioblastoma. J Neurooncol 111:41–48. doi:10.1007/s11060-012-0988-z

    Article  CAS  PubMed  Google Scholar 

  42. Merlo LMF, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6:924–935. doi:10.1038/nrc2013

    Article  CAS  PubMed  Google Scholar 

  43. Akino T, Hida K, Hida Y et al (2009) Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. Am J Pathol 175:2657–2667. doi:10.2353/ajpath.2009.090202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kaur B, Khwaja FW, Severson EA et al (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-Oncol 7:134–153. doi:10.1215/S1152851704001115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lu KV, Bergers G (2013) Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. CNS Oncol 2:49–65. doi:10.2217/cns.12.36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309. doi:10.1016/j.ccr.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95. doi:10.1016/j.ccr.2006.11.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Eklund L, Olsen BR (2006) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312:630–641. doi:10.1016/j.yexcr.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  49. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncol 7:452–464. doi:10.1215/S1152851705000232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zagzag D, Amirnovin R, Greco MA et al (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Investig J Tech Methods Pathol 80:837–849

    Article  CAS  Google Scholar 

  51. Boer JC, Walenkamp AME, den Dunnen WFA (2014) Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM: the potential of combination strategies. Crit Rev Oncol Hematol 92:38–48. doi:10.1016/j.critrevonc.2014.05.001

    Article  PubMed  Google Scholar 

  52. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  53. Song S, Ewald AJ, Stallcup W et al (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879. doi:10.1038/ncb1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Du R, Lu KV, Petritsch C et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220. doi:10.1016/j.ccr.2008.01.034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  CAS  PubMed  Google Scholar 

  56. Shojaei F, Wu X, Malik AK et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1+ myeloid cells. Nat Biotechnol 25:911–920. doi:10.1038/nbt1323

    Article  CAS  PubMed  Google Scholar 

  57. Aghi M, Cohen KS, Klein RJ et al (2006) Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res 66:9054–9064. doi:10.1158/0008-5472.CAN-05-3759

    Article  CAS  PubMed  Google Scholar 

  58. Guo K-T, Juerchott K, Fu P et al (2012) Isolation and characterization of bone marrow-derived progenitor cells from malignant gliomas. Anticancer Res 32:4971–4982

    PubMed  Google Scholar 

  59. Song N, Huang Y, Shi H et al (2009) Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1alpha/CXCR4 axis. Cancer Res 69:6057–6064. doi:10.1158/0008-5472.CAN-08-2007

    Article  CAS  PubMed  Google Scholar 

  60. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  61. Mantovani A, Allavena P (2004) Sica A () Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer Oxf Engl 40:1660–1667. doi:10.1016/j.ejca.2004.03.016

    Article  CAS  Google Scholar 

  62. Heusinkveld M, van der Burg SH (2011) Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 9:216. doi:10.1186/1479-5876-9-216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073. doi:10.1189/jlb.0609385

    Article  CAS  PubMed  Google Scholar 

  64. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  CAS  PubMed  Google Scholar 

  65. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78. doi:10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  66. Barlow KD, Sanders AM, Soker S et al (2012) Pericytes on the tumor vasculature: Jekyll or Hyde? Cancer Microenviron 6:1–17. doi:10.1007/s12307-012-0102-2

    Article  PubMed Central  PubMed  Google Scholar 

  67. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151. doi:10.1172/JCI18549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jain RK, Booth MF (2003) What brings pericytes to tumor vessels? J Clin Invest 112:1134–1136. doi:10.1172/JCI200320087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Mancuso MR, Davis R, Norberg SM et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621. doi:10.1172/JCI24612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Bergers G, Song S, Meyer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295. doi:10.1172/JCI17929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi:10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  72. Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96:1788–1795. doi:10.1038/sj.bjc.6603813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111. doi:10.1016/j.gde.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  74. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Dev Camb Engl 125:1591–1598

    CAS  Google Scholar 

  75. Erber R, Thurnher A, Katsen AD et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J Off Publ Fed Am Soc Exp Biol 18:338–340. doi:10.1096/fj.03-0271fje

    CAS  Google Scholar 

  76. Di Tomaso E, London N, Fuja D et al (2009) PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One 4:e5123. doi:10.1371/journal.pone.0005123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Welti JC, Powles T, Foo S et al (2012) Contrasting effects of sunitinib within in vivo models of metastasis. Angiogenesis 15:623–641. doi:10.1007/s10456-012-9291-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109. doi:10.1038/ncb1007-1102

    Article  CAS  PubMed  Google Scholar 

  79. Boya P, González-Polo R-A, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040. doi:10.1128/MCB.25.3.1025-1040.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248. doi:10.1016/j.cell.2004.11.046

    Article  CAS  PubMed  Google Scholar 

  81. Sato K, Tsuchihara K, Fujii S et al (2007) Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 67:9677–9684. doi:10.1158/0008-5472.CAN-07-1462

    Article  CAS  PubMed  Google Scholar 

  82. Hu Y-L, Jahangiri A, DeLay M, Aghi MK (2012) Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res 72:4294–4299. doi:10.1158/0008-5472.CAN-12-1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Hu Y-L, DeLay M, Jahangiri A et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783. doi:10.1158/0008-5472.CAN-11-3831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Shen J, Zheng H, Ruan J et al (2013) Autophagy inhibition induces enhanced proapoptotic effects of ZD6474 in glioblastoma. Br J Cancer 109:164–171. doi:10.1038/bjc.2013.306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. APMIS Acta Pathol Microbiol Immunol Scand 112:508–525. doi:10.1111/j.1600-0463.2004.apm11207-0810.x

    Article  Google Scholar 

  86. Cheng L, Huang Z, Zhou W et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152. doi:10.1016/j.cell.2013.02.021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833. doi:10.1038/nature09624

    Article  CAS  PubMed  Google Scholar 

  88. Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828. doi:10.1038/nature09557

    Article  CAS  PubMed  Google Scholar 

  89. Francescone R, Scully S, Bentley B et al (2012) Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation. J Biol Chem 287:24821–24831. doi:10.1074/jbc.M111.334540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Soda Y, Marumoto T, Friedmann-Morvinski D et al (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108:4274–4280. doi:10.1073/pnas.1016030108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Soda Y, Myskiw C, Rommel A, Verma IM (2013) Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med Berl Ger 91:439–448. doi:10.1007/s00109-013-1019-z

    Article  CAS  Google Scholar 

  92. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  93. Rubenstein JL, Kim J, Ozawa T et al (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia N Y N 2:306–314

    Article  CAS  Google Scholar 

  94. De Groot JF, Fuller G, Kumar AJ et al (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro-Oncol 12:233–242. doi:10.1093/neuonc/nop027

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  96. Lu KV, Chang JP, Parachoniak CA et al (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22:21–35. doi:10.1016/j.ccr.2012.05.037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Li Y, Li A, Glas M et al (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA 108:9951–9956. doi:10.1073/pnas.1016912108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Eckerich C, Zapf S, Fillbrandt R et al (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer J Int Cancer 121:276–283. doi:10.1002/ijc.22679

    Article  CAS  Google Scholar 

  99. Tchaicha JH, Reyes SB, Shin J et al (2011) Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by β8 integrin. Cancer Res 71:6371–6381. doi:10.1158/0008-5472.CAN-11-0991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Saltz LB, Lenz H-J, Kindler HL et al (2007) Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol Off J Am Soc Clin Oncol 25:4557–4561. doi:10.1200/JCO.2007.12.0949

    Article  CAS  Google Scholar 

  101. Galanis E, Anderson SK, Lafky JM et al (2013) Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): a north central cancer treatment group trial. Clin Cancer Res Off J Am Assoc Cancer Res 19:4816–4823. doi:10.1158/1078-0432.CCR-13-0708

    Article  CAS  Google Scholar 

  102. Snuderl M, Fazlollahi L, Le LP et al (2011) Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20:810–817. doi:10.1016/j.ccr.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  103. Jahangiri A, Aghi MK (2012) Biomarkers predicting tumor response and evasion to anti-angiogenic therapy. Biochim Biophys Acta 1825:86–100. doi:10.1016/j.bbcan.2011.10.004

    CAS  PubMed  Google Scholar 

  104. Gu G, Hu Q, Feng X et al (2014) PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials 35:8215–8226. doi:10.1016/j.biomaterials.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  105. Feng Y, Zhu M, Dangelmajer S et al (2014) Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer. Cell Death Dis 5:e1567. doi:10.1038/cddis.2014.521

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding to M.K.A.’s laboratory from the NIH (1 R01 NS079697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Aghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flanigan, P.M., Aghi, M.K. Adaptation to antiangiogenic therapy in neurological tumors. Cell. Mol. Life Sci. 72, 3069–3082 (2015). https://doi.org/10.1007/s00018-015-1916-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1916-0

Keywords

Navigation