Skip to main content

Advertisement

Log in

Precision Therapy for Brain Tumors in Hereditary Syndromes

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2021

This article has been updated

Opinion statement

Nervous system tumors arising in the setting of monogenic, hereditary cancer predisposition syndromes are unique in that the initiating genetic event in tumor formation is known. This knowledge provides a powerful treatment approach if the alteration or pathway can be targeted with a therapeutic agent. A reasonable argument can be made for the use of targeted agents in these tumor patients, even though many of them have FDA approval only for other tumor types. It is our practice to use and employ targeted therapy when standard treatments have failed or represent an unattractive option. Over time, however, targeted therapies will likely become first-line options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Coy S, Rashid R, Stemmer-Rachamimov A, Santagata S. An update on the CNS manifestations of neurofibromatosis type 2. Acta Neuropathol. 2020;139(4):643–65. https://doi.org/10.1007/s00401-019-02029-5.

    Article  PubMed  Google Scholar 

  2. Cotter JA. An update on the central nervous system manifestations of tuberous sclerosis complex. Acta Neuropathol. 2020;139(4):613–24. https://doi.org/10.1007/s00401-019-02003-1.

    Article  PubMed  Google Scholar 

  3. • Franz DN, Agricola K, Mays M, Tudor C, Care MM, Holland-Bouley K, et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol. 2015;78(6):929–38. https://doi.org/10.1002/ana.24523 Key paper showing the long-term effect of everolimus on SEGA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halliday J, Rutherford SA, McCabe MG, Evans DG. An update on the diagnosis and treatment of vestibular schwannoma. Expert Rev Neurother. 2018;18(1):29–39. https://doi.org/10.1080/14737175.2018.1399795.

    Article  CAS  PubMed  Google Scholar 

  5. Karajannis MA, Legault G, Hagiwara M, Giancotti FG, Filatov A, Derman A, et al. Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro-Oncology. 2014;16(2):292–7. https://doi.org/10.1093/neuonc/not150.

    Article  CAS  PubMed  Google Scholar 

  6. Goutagny S, Giovannini M, Kalamarides M. A 4-year phase II study of everolimus in NF2 patients with growing vestibular schwannomas. J Neuro-Oncol. 2017;133(2):443–5. https://doi.org/10.1007/s11060-017-2447-3.

    Article  CAS  Google Scholar 

  7. Graillon T, Sanson M, Campello C, Idbaih A, Peyre M, Peyriere H, et al. Everolimus and octreotide for patients with recurrent meningioma: results from the phase II CEVOREM Trial. Clin Cancer Res. 2020;26(3):552–7. https://doi.org/10.1158/1078-0432.CCR-19-2109.

    Article  CAS  PubMed  Google Scholar 

  8. FDA Everolimus. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/022334s036lbl.pdf.

  9. Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol. 2020;139(4):625–41. https://doi.org/10.1007/s00401-019-02002-2.

    Article  PubMed  Google Scholar 

  10. • Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382(15):1430–42. https://doi.org/10.1056/NEJMoa1912735 Groundbreaking paper on MEK1/2 treatment of plexiform neurofibroma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ammoun S, Ristic N, Matthies C, Hilton DA, Hanemann CO. Targeting ERK1/2 activation and proliferation in human primary schwannoma cells with MEK1/2 inhibitor AZD6244. Neurobiol Dis. 2010;37(1):141–6. https://doi.org/10.1016/j.nbd.2009.09.017.

    Article  CAS  PubMed  Google Scholar 

  12. Plotkin SR, Halpin C, McKenna MJ, Loeffler JS, Batchelor TT, Barker FG 2nd. Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol. 2010;31(7):1135–43. https://doi.org/10.1097/MAO.0b013e3181eb328a.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Karajannis MA, Legault G, Hagiwara M, Ballas MS, Brown K, Nusbaum AO, et al. Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro-Oncology. 2012;14(9):1163–70. https://doi.org/10.1093/neuonc/nos146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. FDA selumetinib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213756s000lbl.pdf.

  15. FDA lapatinib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022059s023lbl.pdf.

  16. Kim B, Tabori U, Hawkins C. An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathol. 2020;139(4):703–15. https://doi.org/10.1007/s00401-020-02124-y.

    Article  PubMed  Google Scholar 

  17. Therkildsen C, Ladelund S, Rambech E, Persson A, Petersen A, Nilbert M. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome. Eur J Neurol. 2015;22(4):717–24. https://doi.org/10.1111/ene.12647.

    Article  CAS  PubMed  Google Scholar 

  18. Anghileri E, Di Ianni N, Paterra R, Langella T, Zhao J, Eoli M, et al. High tumor mutational burden and T-cell activation are associated with long-term response to anti-PD1 therapy in Lynch syndrome recurrent glioblastoma patient. Cancer Immunol Immunother. 2021;70(3):831–42. https://doi.org/10.1007/s00262-020-02769-4.

    Article  CAS  PubMed  Google Scholar 

  19. Suerink M, Ripperger T, Messiaen L, Menko FH, Bourdeaut F, Colas C, et al. Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus guidelines for testing a child without malignancy. J Med Genet. 2019;56(2):53–62. https://doi.org/10.1136/jmedgenet-2018-105664.

    Article  PubMed  Google Scholar 

  20. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11. https://doi.org/10.1200/JCO.2016.66.6552.

    Article  CAS  PubMed  Google Scholar 

  21. FDA nivolumab. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125554s090lbl.pdf.

  22. Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393–405. https://doi.org/10.1016/j.ccr.2014.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kieran MW. Targeted treatment for sonic hedgehog-dependent medulloblastoma. Neuro-Oncology. 2014;16(8):1037–47. https://doi.org/10.1093/neuonc/nou109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene. 2007;26(44):6442–7. https://doi.org/10.1038/sj.onc.1210467.

    Article  CAS  PubMed  Google Scholar 

  25. Kian W, Roisman LC, Goldstein IM, Abo-Quider A, Samueli B, Wallach N, et al. Vismodegib as first-line treatment of mutated sonic hedgehog pathway in adult medulloblastoma. JCO Precis Oncol. 2020;4. https://doi.org/10.1200/PO.19.00264.

  26. • Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol. 2015;33(24):2646–54. https://doi.org/10.1200/JCO.2014.60.1591 Important study of SHH treatment with the SMO inhibitor vismodegib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. FDA Vismodegib. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203388lbl.pdf.

  28. Plotkin SR, Merker VL, Halpin C, Jennings D, McKenna MJ, Harris GJ, et al. Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol. 2012;33:1046–52.

    Article  Google Scholar 

  29. • Plotkin SR, Duda DG, Muzikansky A, Allen J, Blakeley J, Rosser T, et al. Multicenter, prospective, phase II and biomarker study of high-dose bevacizumab as induction therapy in patients with neurofibromatosis type 2 and progressive vestibular schwannoma. J Clin Oncol. 2019;37(35):3446–54. https://doi.org/10.1200/JCO.19.01367 Important paper for anti-VEGF treatment of VS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. FDA bevacizumab. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/125085s225lbl.pdf.

  31. Miele E, Mastronuzzi A, Po A, Carai A, Alfano V, Serra A, et al. Characterization of medulloblastoma in Fanconi anemia: a novel mutation in the BRCA2 gene and SHH molecular subgroup. Biomark Res. 2015;3:13. https://doi.org/10.1186/s40364-015-0038-z.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chan AK, Han SJ, Choy W, Beleford D, Aghi MK, Berger MS, et al. Familial melanoma-astrocytoma syndrome: synchronous diffuse astrocytoma and pleomorphic xanthoastrocytoma in a patient with germline CDKN2A/B deletion and a significant family history. Clin Neuropathol. 2017;36(5):213–21. https://doi.org/10.5414/NP301022.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab Dispos. 2015;43(9):1360–71. https://doi.org/10.1124/dmd.114.062745.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor JW, Parikh M, Phillips JJ, James CD, Molinaro AM, Butowski NA, et al. Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neuro-Oncol. 2018;140(2):477–83. https://doi.org/10.1007/s11060-018-2977-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Henson MD.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Conflict of Interest

Gerald E. Wallace declares that he has no conflict of interest.

Madeleine Tjoelker declares that she has no conflict of interest.

Kaitlyn Bartley declares that she has no conflict of interest.

John W. Henson has received speaker's honoraria from Tempus.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

The original online version of this article was revised: The author name, Gerald C. Wallace, was incorrectly written as Gerald E. Wallace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, G.C., Tjoelker, M., Bartley, K. et al. Precision Therapy for Brain Tumors in Hereditary Syndromes. Curr. Treat. Options in Oncol. 22, 80 (2021). https://doi.org/10.1007/s11864-021-00876-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00876-7

Keywords

Navigation