Skip to main content

Advertisement

Log in

Cardiotoxicity of Radiation Therapy: Mechanisms, Management, and Mitigation

  • Cardio-oncology (MG Fradley, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion Statement

Radiation therapy is a key component of modern-day cancer therapy and can reduce the rates of recurrence and death from cancer. However, it can increase risk of cardiovascular (CV) events, and our understanding of the timeline associated with that risk is shorter than previously thought. Risk mitigation strategies, such as different positioning techniques, and breath hold acquisitions as well as baseline cardiovascular risk stratification that can be undertaken at the time of radiotherapy planning should be implemented, particularly for patients receiving chest radiation therapy. Primary and secondary prevention of cardiovascular disease (CVD), as appropriate, should be used before, during, and after radiation treatment in order to minimize the risks. Opportunistic screening for subclinical coronary disease provides an attractive possibility for primary/secondary CVD prevention and thus mitigation of long-term CV risk. More data on long-term clinical usefulness of this strategy and development of appropriate management pathways would further strengthen the evidence for the implementation of such screening. Clear guidelines in initial cardiovascular screening and cardiac aftercare following radiotherapy need to be formulated in order to integrate these measures into everyday clinical practice and policy and subsequently improve post-treatment morbidity and mortality for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Koczwara B, Meng R, Miller MD, Clark RA, Kaambwa B, Marin T, Damarell RA, Roder DM. Late mortality in people with cancer: a population-based Australian study. Med J Aust. 2021;214(7):318–23.

  2. Australian Institute of Health and Welfare (AIHW). Australian Cancer Incidence and Mortality (ACIM) books. All cancers combined Canberra: AIHW [Accessed January 2021]. Canberra: AIHW; 2020.

    Google Scholar 

  3. Tapio S. Pathology and biology of radiation-induced cardiac disease. J Radiat Res. 2016;57:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yusuf SW, Venkatesulu BP, Mahadevan LS, Krishnan S. Radiation-induced cardiovascular disease: a clinical perspective. Front Cardiovasc Med. 2017;4:66.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31:3673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stewart FA, Heeneman S, Te Poele J, et al. Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol. 2006;168:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang B, Wang H, Zhang M, et al. Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. J Cell Mol Med. 2020;24:7717–29.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu LK, Ouyang W, Zhao X, et al. Pathogenesis and prevention of radiation-induced myocardial fibrosis. Asian Pac J Cancer Prev. 2017;18:583–7.

    PubMed  PubMed Central  Google Scholar 

  9. Teng AE, Noor B, Ajijola OA, Yang EH. Chemotherapy and radiation-associated cardiac autonomic dysfunction. Curr Oncol Rep. 2021;23:14.

    Article  PubMed  Google Scholar 

  10. Coumbe BGT, Groarke JD. Cardiovascular autonomic dysfunction in patients with cancer. Curr Cardiol Rep. 2018;20:69.

    Article  PubMed  Google Scholar 

  11. Groarke JD, Tanguturi VK, Hainer J, et al. Abnormal exercise response in long-term survivors of Hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015;65:573–83.

    Article  PubMed  Google Scholar 

  12. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.

    Article  CAS  PubMed  Google Scholar 

  13. Cuzick JSH, Rutqvist L, et al. Cause specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12:447–53.

    Article  CAS  PubMed  Google Scholar 

  14. Darby SCMP, Taylor CW, et al. Long term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6:557–65.

    Article  PubMed  Google Scholar 

  15. Hooning MJBA, Aleman BM, et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst. 2007;99:365–75.

    Article  PubMed  Google Scholar 

  16. van Nimwegen FASM, Cutter DJ, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphom. J Clin Oncol. 2016;34:235–43.

    Article  PubMed  Google Scholar 

  17. Hancock SLTM, Hoppe RT. Factors affecting late mortality from heart disease after treatment ofHodgkin’s disease. JAMA. 1993;270:1949–55.

    Article  CAS  PubMed  Google Scholar 

  18. Wang K, Eblan MJ, Deal AM, et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35:1387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pierre Loap KK, Kirova Y. Cardiotoxicity in breast cancer patients treated with radiation therapy: from evidences to controversies. Crit Rev Oncol Hematol. 2020:156.

  20. Reardon KA, Read PW, Morris MM, Reardon MA, Geesey C, Wijesooriya K. A comparative analysis of 3D conformal deep inspiratory-breath hold and freebreathing intensity-modulated radiation therapy for left-sided breast cancer. Med Dosim. 2013;38:190–5.

    Article  PubMed  Google Scholar 

  21. Bergom C, Currey A, Desai N, Tai A, Strauss JB. Deep inspiration breath hold: techniques and advantages for cardiac sparing during breast cancer irradiation. Front Oncol. 2018;8:87.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wiant D, Wentworth S, Liu H, Sintay B. How important is a reproducible breath hold for deep inspiration breath hold breast radiation therapy? Int J Radiat Oncol Biol Phys. 2015;93:901–7.

    Article  PubMed  Google Scholar 

  23. Nissen HD, Appelt AL. Improved heart, lung and target dose with deep inspiration breath hold in a large clinical series of breast cancer patients. Radiother Oncol. 2013;106:28–32.

    Article  PubMed  Google Scholar 

  24. Hayden AJ, Rains M, Tiver K. Deep inspiration breath hold technique reduces heart dose from radiotherapy for left-sided breast cancer. Journal of medical imaging and radiation oncology. 2012;56:464–72.

    Article  PubMed  Google Scholar 

  25. Korreman SS, Pedersen AN, Aarup LR, Nøttrup TJ, Specht L, Nystr om H. Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys. 2006:1375–80.

  26. Berg M, Lorenzen EL, Jensen I, Thomsen MS, Lutz CM, Refsgaard L, et al. The potential benefits from respiratory gating for breast cancer patients regarding target coverage and dose to organs at risk when applying strict dose limits to the heart: results from the DBCG HYPO trial. Acta Oncol. 2018;57:113–9.

    Article  PubMed  Google Scholar 

  27. Giraud P, Djadi-Prat J, Morelle M, Pourel N, Durdux C, Carrie C, et al. Contribution of respiratory gating techniques for optimization of breast cancer radiotherapy. Cancer Investig. 2012;30:323–30.

    Article  Google Scholar 

  28. Fourquet A, Campana F, Rosenwald J-C, Vilcoq JR. Breast irradiation in the lateral decubitus position: technique of the Institut Curie. Radiother Oncol. 1991;22:261–5.

    Article  CAS  PubMed  Google Scholar 

  29. Lymberis SC, de Wyngaert JK, Parhar P, Chhabra AM, Fenton-Kerimian M, Chang J, et al. Prospective assessment of optimal individual position (prone versus supine) for breast radiotherapy: volumetric and dosimetric correlations in 100 patients. Int J Radiat Oncol Biol Phys. 2012;84:902–9.

    Article  PubMed  Google Scholar 

  30. Chargari C, Kirov KM, Bollet MA, Magn’ e N, V’edrine L, Cremades S, et al. Cardiac toxicity in breast cancer patients: from a fractional point of view to a global assessment. Cancer Treat Rev. 2011;37:321–30.

    Article  CAS  PubMed  Google Scholar 

  31. Varga Z, Cserh’ati A, R’rosi F, Boda K, Guly’as G, Együd Z, et al. Individualized positioning for maximum heart protection during breast irradiation. Acta Oncol. 2014;53:58–64.

    Article  PubMed  Google Scholar 

  32. Bronsart E, Dureau S, Xu HP, Bazire L, Chilles A, Costa E, et al. Whole breast radiotherapy in the lateral isocentric lateral decubitus position: long-term efficacy and toxicity results. Radiother Oncol. 2017;124:214–9.

    Article  PubMed  Google Scholar 

  33. Kirova YM, Hijal T, Campana F, Fournier-Bidoz N, Stilhart A, Dendale R, et al. Whole breast radiotherapy in the lateral decubitus position: a dosimetric and clinical solution to decrease the doses to the organs at risk (OAR). Radiother Oncol. 2014;110:477–81.

    Article  PubMed  Google Scholar 

  34. Landau D, Adams EJ, Webb S, Ross G. Cardiac avoidance in breast radiotherapy: a comparison of simple shielding techniques with intensity-modulated radiotherapy. Radiother Oncol. 2001;60:247–55.

    Article  CAS  PubMed  Google Scholar 

  35. McDonald MW, Godette KD, Butker EK, Davis LW, Johnstone PAS. Longterm outcomes of IMRT for breast cancer: a single-institution cohort analysis. Int J Radiat Oncol Biol Phys. 2008;72:1031–40.

    Article  PubMed  Google Scholar 

  36. Arsene-Henry A, Foy J-P, Robilliard M, Xu H-P, Bazire L, Peurien D, et al. The use of helical tomotherapy in the treatment of early stage breast cancer: indications, tolerance, efficacy-a single center experience. Oncotarget. 2018;9:23608–19.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hernandez M, Zhang, R., Sanders, M., Newhauser, W. A treatment planning comparison of volumetric modulated arc therapy and proton therapy for a sample of breast cancer patients treated with post-mastectomy radiotherapy. Journal Proton Therapy 2015;1.

  38. Jimenez RB, Hickey S, DePauw N, Yeap BY, Batin E, Gadd MA, et al. Phase II study of proton beam radiation therapy for patients with breast cancer requiring regional nodal irradiation. J Clin Oncol. 2019;37:2778–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bekelman JE, Lu, H., Pugh, S., Baker, K., Berg, C.D., de Gonzalez, A.B., et al. Pragmatic randomised clinical trial of proton versus photon therapy for patients with non-metastatic breast cancer: the Radiotherapy Comparative Effectiveness (RadComp) Consortium trial protocol. BMJ Open 2019.

  40. Gregory T, Armstrong KCO, Chen Y, Kawashima T, Yasui Y, Leisenring W, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. JCO. 2013:31.

  41. Boulet JPJ, Hulten EA, Neilan T, Dragomir A, Freeman C, Lambert C, et al. Statin use and risk of vascular events among cancer patients after radiotherapy to the thorax, head, and neck. J Am Heart Assoc. 2019;8:1–9.

  42. Maria Isabel Camara Planek AJS, Annabelle Santos Volgman, Tochukwu M. Okwuosa. Exploratory review of the role of statins, colchicine, and aspirin for the prevention of radiation-associated cardiovascular disease and mortality. Journal of American Heart Association 2020.

  43. Ettehad DEC, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;287:957–67.

    Article  Google Scholar 

  44. Wright JT Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  CAS  PubMed  Google Scholar 

  45. Alliance NVDP. Guidelines for the management of absolute cardiovascular disease risk. NVDPA 2012

  46. Server PSDB, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower than average cholesterol concentrations, in the Angalo-Scandanavian cardiac outcomes trial - Lipid Lowering Arm (ASCOT-LLA): A Multicentre Randomised Controlled Trial. Lancet. 2003;361:1149–58.

    Article  Google Scholar 

  47. DE Ridker PM, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. NEJM. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  48. McNeil JJ, Nelson MR, Woods RL, et al. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379:1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parekh AK, Galloway JM, Hong Y, Wright JS. Aspirin in the secondary prevention of cardiovascular disease. N Engl J Med. 2013;368:204–5.

    Article  CAS  PubMed  Google Scholar 

  50. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596–646.

    PubMed  PubMed Central  Google Scholar 

  51. Bartel AGCJ, Peter RH, Behar VS, Kong Y, Lester RG. The significance of coronary calcification detected by fluoroscopy. A report of 360 patients. Circulation. 1974;49:1247–53.

    Article  CAS  PubMed  Google Scholar 

  52. Chua A, Blankstein R, Ko B. Coronary artery calcium in primary prevention. Australian journal of general practice. 2020;49:464–9.

    Article  PubMed  Google Scholar 

  53. Greenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE. Coronary calcium score and cardiovascular risk. J Am Coll Cardiol. 2018;72:434–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Detrano RGA, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. NEJM. 2008;358:1136–45.

    Article  Google Scholar 

  55. Budoff MJSL, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.

    Article  PubMed  Google Scholar 

  56. Mitchell JDPR, Moon P, Novak E, Villines TC. Coronary artery calcium and long-term risk of death, myocardial infarction, and stroke: the Walter Reed cohort study. JACC Cardiovasc Imaging. 2018;11:1799–806.

    Article  PubMed  Google Scholar 

  57. Sarwar ASL, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2:675–88.

    Article  PubMed  Google Scholar 

  58. Polonsky TSMR, Jorgensen NW, et al. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA. 2010;303:1610–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Erbel RMS, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf recall study. J Am Coll Cardiol. 2010;56:1397–406.

    Article  PubMed  Google Scholar 

  60. Agatston ASJW, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  CAS  PubMed  Google Scholar 

  61. Wu MT, Yang P, Huang YL, et al. Coronary arterial calcification on low-dose ungated MDCT for lung cancer screening: concordance study with dedicated cardiac CT. AJR Am J Roentgenol. 2008;190:923–8.

    Article  PubMed  Google Scholar 

  62. Gernaat S II, de Vos B, Richard Takx R, Young-Afat D, Rijnberg N, Grobbee D, van der Graaf Y, Verkooijen M, et al. Automatic coronary artery calcium scoring on radiotherapy planning CT scans of breast cancer patients: reproducibility and association with traditional cardiovascular risk factors. PLoS One 2016;11

  63. Xie X, Zhao Y, de Bock GH, et al. Validation and prognosis of coronary artery calcium scoring in nontriggered thoracic computed tomography: systematic review and meta-analysis. Circulation Cardiovascular imaging. 2013;6:514–21.

    Article  PubMed  Google Scholar 

  64. Cuddy S, Payne DL, Murphy D, et al. Incidental coronary artery calcification on computerized tomography in patients with early stage non-small cell lung cancer and opportunities for cardiovascular risk optimization. J Am Coll Cardiol. 2018;71:A1865–5.

  65. Miedema MDDD, Misialek JR, et al. Use of coronary artery calcium testing to guide aspirin utilization for primary prevention: estimates from the multi-ethnic study of atherosclerosis. Circ Cardiovasc Qual Outcomes. 2014;7:453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Blaha MJBM, DeFilippis AP, et al. Associations between C-reactive protein, coronary artery calcium, and cardiovascular events: Implications for the JUPITER population from MESA, a population-based cohort study. Lancet. 2011;378:684–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitchell JDFN, Gage BF, et al. Impact of statins on cardiovascular outcomes following coronary artery calcium scoring. J Am Coll Cardiol. 2018;72:3233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elias-Smale SEPR, Koller MT, et al. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010;56:1407–14.

    Article  PubMed  Google Scholar 

  69. Liew GCC, van Pelt N, et al. Cardiac Society of Australia and New Zealand position statement: coronary artery calcium scoring. Heart Lung Circ. 2017;26:1239–51.

    Article  PubMed  Google Scholar 

  70. Saremi F AS. Coronary plaque characterization using CT. 204 2015;3:W249–60.

  71. Lancellotti P, Nkomo VT, Badano LP, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2013;26:1013–32.

    Article  Google Scholar 

Download references

Funding

This work is supported in part by the National Heart Foundation Future Leader Fellowships (DTMN [104814] and ALS [101918]), NSW Health EMCR Fellowship (DTMN), NSW Health Cardiovascular Capacity Building EMC Grant (ALS), Hunter Cancer Research Alliance New Strategic Initiatives Grant (ALS and DTMN), and John Hunter Charitable Trust Grants (DTMN and ALS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sverdlov MBBS, PhD, FRACP.

Ethics declarations

Conflict of Interest

Philippa Ell declares that she has no conflict of interest. Jarad Martin is a contractor and shareholder for GenesisCare. Daniel A. Cehic declares that he has no conflict of interest. Doan T.M. Ngo declares that she has no conflict of interest. Aaron L. Sverdlov has received an equipment loan for research support from Roche Diagnostics Pty Ltd., an unrestricted educational grant from Celgene Pty Ltd., and a conference sponsorship grant from Bristol-Myers Squibb Australia Pty Ltd.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ell, P., Martin, J.M., Cehic, D.A. et al. Cardiotoxicity of Radiation Therapy: Mechanisms, Management, and Mitigation. Curr. Treat. Options in Oncol. 22, 70 (2021). https://doi.org/10.1007/s11864-021-00868-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00868-7

Keywords

Navigation