Skip to main content

Advertisement

Log in

Cardiovascular Autonomic Dysfunction in Patients with Cancer

  • Cardio-Oncology (SA Francis and RB Morgan, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Elucidating the mechanisms that contribute to adverse cardiovascular (CV) outcomes and reduce quality of life among patients with cancer is paramount. Cancer, certain cancer drugs, radiation therapy, cancer-associated lifestyle disturbances, and cancer-independent comorbidities combine to predispose oncology patients to autonomic dysfunction (AD). This review will explore the assessment, etiology, and clinical implications of AD in cancer patients and will speculate on therapeutic and research opportunities.

Recent Findings

AD is particularly prevalent among patients with advanced cancer, but studies suggest increased prevalence across the entire continuum of cancer survivors compared to cancer-free controls. Data on cancer therapy-induced injury to the autonomic nervous system are limited to small studies. AD has been reported after cranial, neck, and mediastinal radiation therapy. Although AD has been shown to confer increased risk of adverse CV outcomes in cancer-free patients, the prognostic relevance of AD in oncology patients is less well investigated. Markers of AD including elevated resting heart rate (HR), reduced HR variability, and abnormal HR recovery have been associated with shorter survival times in various cancer cohorts. Furthermore, AD has been implicated in the etiology of cancer-related fatigue and exercise limitation.

Summary

Multiple risk factors predispose oncology patients to AD, which is associated with adverse outcomes, including increased mortality, exercise limitation, and fatigue among this cohort. The contribution of AD to overall morbidity and mortality in cancer survivors has largely been overlooked to date. Further investigation is necessary to better understand cancer-treatment specific autonomic injury and to evaluate the role of various pharmacological and non-pharmacological interventions with potential to tackle the sympathovagal imbalance observed in cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Howlader N NA, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER cancer statistics review, 1975–2014, National Cancer Institute 2016.

  2. Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm. 2010;7:994–6.

    Article  PubMed  Google Scholar 

  3. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004–21.

    Article  PubMed  CAS  Google Scholar 

  4. Schwartz PJ, De Ferrari GM. Sympathetic-parasympathetic interaction in health and disease: abnormalities and relevance in heart failure. Heart Fail Rev. 2011;16:101–7.

    Article  PubMed  Google Scholar 

  5. Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol. 2012;59:117–22.

    Article  PubMed  Google Scholar 

  6. • Chatterjee NA, Singh JP. Novel interventional therapies to modulate the autonomic tone in heart failure. JACC Heart Fail. 2015;3:786–802. Excellent review of anatomy of the autonomic nervous system as well as metrics of its assessment. There is discussion on contemporary non-pharmacological autonomic nervous system modulation therapies, and on related novel technologies and strategies on the horizon.

    Article  PubMed  Google Scholar 

  7. Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl). 2005;209:425–38.

    Article  Google Scholar 

  8. Schwartz PJ. Cutting nerves and saving lives. Heart Rhythm. 2009;6:760–3.

    Article  PubMed  Google Scholar 

  9. Goldsmith SR. Interactions between the sympathetic nervous system and the RAAS in heart failure. Curr Heart Fail Rep. 2004;1:45–50.

    Article  PubMed  Google Scholar 

  10. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.

    Article  PubMed  CAS  Google Scholar 

  11. Biaggioni I, Whetsell WO, Jobe J, Nadeau JH. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii. Hypertension. 1994;23:491–5.

    Article  PubMed  CAS  Google Scholar 

  12. Zygmunt A, Stanczyk J. Methods of evaluation of autonomic nervous system function. Arch Med Sci. 2010;6:11–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hirvonen HE, Salmi TT, Heinonen E, Antila KJ, Valimaki IA. Vincristine treatment of acute lymphoblastic leukemia induces transient autonomic cardioneuropathy. Cancer. 1989;64:801–5.

    Article  PubMed  CAS  Google Scholar 

  14. Adabag AS, Grandits GA, Prineas RJ, Crow RS, Bloomfield HE, Neaton JD, et al. Relation of heart rate parameters during exercise test to sudden death and all-cause mortality in asymptomatic men. Am J Cardiol. 2008;101:1437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341:1351–7.

    Article  PubMed  CAS  Google Scholar 

  16. Vivekananthan DP, Blackstone EH, Pothier CE, Lauer MS. Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease. J Am Coll Cardiol. 2003;42:831–8.

    Article  PubMed  Google Scholar 

  17. Watanabe J, Thamilarasan M, Blackstone EH, Thomas JD, Lauer MS. Heart rate recovery immediately after treadmill exercise and left ventricular systolic dysfunction as predictors of mortality: the case of stress echocardiography. Circulation. 2001;104:1911–6.

    Article  PubMed  CAS  Google Scholar 

  18. Stein PK, Bosner MS, Kleiger RE, Conger BM. Heart rate variability: a measure of cardiac autonomic tone. Am Heart J. 1994;127:1376–81.

    Article  PubMed  CAS  Google Scholar 

  19. Ewing DJ, Clarke BF. Diagnosis and management of diabetic autonomic neuropathy. Br Med J (Clin Res Ed). 1982;285:916–8.

    Article  CAS  Google Scholar 

  20. Walsh D, Nelson KA. Autonomic nervous system dysfunction in advanced cancer. Support Care Cancer. 2002;10:523–8.

    Article  PubMed  Google Scholar 

  21. Bruera E, Chadwick S, Fox R, Hanson J, MacDonald N. Study of cardiovascular autonomic insufficiency in advanced cancer patients. Cancer Treat Rep. 1986;70:1383–7.

    PubMed  CAS  Google Scholar 

  22. Guo Y, Palmer JL, Strasser F, Yusuf SW, Bruera E. Heart rate variability as a measure of autonomic dysfunction in men with advanced cancer. Eur J Cancer Care (Engl). 2013;22:612–6.

    Article  CAS  Google Scholar 

  23. Fadul N, Strasser F, Palmer JL, Yusuf SW, Guo Y, Li Z, et al. The association between autonomic dysfunction and survival in male patients with advanced cancer: a preliminary report. J Pain Symptom Manag. 2010;39:283–90.

    Article  Google Scholar 

  24. • Lakoski SG, Jones LW, Krone RJ, Stein PK, Scott JM. Autonomic dysfunction in early breast cancer: incidence, clinical importance, and underlying mechanisms. Am Heart J. 2015;170:231–41. Excellent review of the clinical importance of autonomic dysfunction as a cardiovascular risk marker among breast cancer patients.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J Clin. 2013;63:419–37.

    Article  PubMed  Google Scholar 

  26. McLeod JG, Tuck RR. Disorders of the autonomic nervous system: part 1. Pathophysiology and clinical features. Ann Neurol. 1987;21:419–30.

    Article  PubMed  CAS  Google Scholar 

  27. Screnci D, McKeage MJ. Platinum neurotoxicity: clinical profiles, experimental models and neuroprotective approaches. J Inorg Biochem. 1999;77:105–10.

    Article  PubMed  CAS  Google Scholar 

  28. Krarup-Hansen A, Helweg-Larsen S, Schmalbruch H, Rorth M, Krarup C. Neuronal involvement in cisplatin neuropathy: prospective clinical and neurophysiological studies. Brain. 2007;130:1076–88.

    Article  PubMed  CAS  Google Scholar 

  29. Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol. 2002;249:9–17.

    Article  PubMed  CAS  Google Scholar 

  30. Nuver J, Smit AJ, Sleijfer DT, van Gessel AI, van Roon AM, van der Meer J, et al. Left ventricular and cardiac autonomic function in survivors of testicular cancer. Eur J Clin Investig. 2005;35:99–103.

    Article  CAS  Google Scholar 

  31. Boogerd W, ten Bokkel Huinink WW, Dalesio O, Hoppenbrouwers WJ, van der Sande JJ. Cisplatin induced neuropathy: central, peripheral and autonomic nerve involvement. J Neuro-Oncol. 1990;9:255–63.

    Article  CAS  Google Scholar 

  32. Hansen SW. Autonomic neuropathy after treatment with cisplatin, vinblastine, and bleomycin for germ cell cancer. BMJ. 1990;300:511–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Richardson P, Cantwell BM. Autonomic neuropathy after cisplatin based chemotherapy. BMJ. 1990;300:1466–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dermitzakis EV, Kimiskidis VK, Eleftheraki A, Lazaridis G, Konstantis A, Basdanis G, et al. The impact of oxaliplatin-based chemotherapy for colorectal cancer on the autonomous nervous system. Eur J Neurol. 2014;21:1471–7.

    Article  PubMed  CAS  Google Scholar 

  35. Nazir HF, AlFutaisi A, Zacharia M, Elshinawy M, Mevada ST, Alrawas A, Khater D, Jaju D and Wali Y. Vincristine-induced neuropathy in pediatric patients with acute lymphoblastic leukemia in Oman: frequent autonomic and more severe cranial nerve involvement. Pediatr Blood Cancer 2017;64.

  36. Roca E, Bruera E, Politi PM, Barugel M, Cedaro L, Carraro S, et al. Vinca alkaloid-induced cardiovascular autonomic neuropathy. Cancer Treat Rep. 1985;69:149–51.

    PubMed  CAS  Google Scholar 

  37. DiBella NJ. Vincristine-induced orthostatic hypotension: a prospective clinical study. Cancer Treat Rep. 1980;64:359–6.

    PubMed  CAS  Google Scholar 

  38. Dermitzakis EV, Kimiskidis VK, Lazaridis G, Alexopoulou Z, Timotheadou E, Papanikolaou A, et al. The impact of paclitaxel and carboplatin chemotherapy on the autonomous nervous system of patients with ovarian cancer. BMC Neurol. 2016;16:190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ekholm EM, Salminen EK, Huikuri HV, Jalonen J, Antila KJ, Salmi TA, et al. Impairment of heart rate variability during paclitaxel therapy. Cancer. 2000;88:2149–53.

    Article  PubMed  CAS  Google Scholar 

  40. Ekholm E, Rantanen V, Bergman M, Vesalainen R, Antila K, Salminen E. Docetaxel and autonomic cardiovascular control in anthracycline treated breast cancer patients. Anticancer Res. 2000;20:2045–8.

    PubMed  CAS  Google Scholar 

  41. Ekholm E, Rantanen V, Antila K, Salminen E. Paclitaxel changes sympathetic control of blood pressure. Eur J Cancer. 1997;33:1419–24.

    Article  PubMed  CAS  Google Scholar 

  42. Viniegra M, Marchetti M, Losso M, Navigante A, Litovska S, Senderowicz A, et al. Cardiovascular autonomic function in anthracycline-treated breast cancer patients. Cancer Chemother Pharmacol. 1990;26:227–31.

    Article  PubMed  CAS  Google Scholar 

  43. Tjeerdsma G, Meinardi MT, van Der Graaf WT, van Den Berg MP, Mulder NH, Crijns HJ, et al. Early detection of anthracycline induced cardiotoxicity in asymptomatic patients with normal left ventricular systolic function: autonomic versus echocardiographic variables. Heart. 1999;81:419–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Meinardi MT, van Veldhuisen DJ, Gietema JA, Dolsma WV, Boomsma F, van den Berg MP, et al. Prospective evaluation of early cardiac damage induced by epirubicin-containing adjuvant chemotherapy and locoregional radiotherapy in breast cancer patients. J Clin Oncol. 2001;19:2746–53.

    Article  PubMed  CAS  Google Scholar 

  45. Stratogianni A, Tosch M, Schlemmer H, Weis J, Katona I, Isenmann S, et al. Bortezomib-induced severe autonomic neuropathy. Clin Auton Res. 2012;22:199–202.

    Article  PubMed  CAS  Google Scholar 

  46. Giannoccaro MP, Donadio V, Gomis Perez C, Borsini W, Di Stasi V, Liguori R. Somatic and autonomic small fiber neuropathy induced by bortezomib therapy: an immunofluorescence study. Neurol Sci. 2011;32:361–3.

    Article  PubMed  Google Scholar 

  47. Kamath MV, Halton J, Harvey A, Turner-Gomes S, McArthur A, Barr RD. Cardiac autonomic dysfunction in survivors of acute lymphoblastic leukemia in childhood. Int J Oncol. 1998;12:635–40.

    PubMed  CAS  Google Scholar 

  48. Sharabi Y, Dendi R, Holmes C, Goldstein DS. Baroreflex failure as a late sequela of neck irradiation. Hypertension. 2003;42:110–6.

    Article  PubMed  CAS  Google Scholar 

  49. • Groarke JD, Tanguturi VK, Hainer J, Klein J, Moslehi JJ, Ng A, et al. Abnormal exercise response in long-term survivors of hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015;65:573–83. This cohort study reports an association between mediastinal radiation and markers of cardiac autonomic dysfunction, namely elevated resting heart rate and abnormal heart rate recovery. The authors demonstrate that these abnormalities are associated with reduced exercise capacity among radiation survivors, and that abnormal heart rate recovery is associated with higher risk of all-cause mortality during follow-up.

    Article  PubMed  Google Scholar 

  50. Adams MJ, Lipsitz SR, Colan SD, Tarbell NJ, Treves ST, Diller L, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22:3139–48.

    Article  PubMed  Google Scholar 

  51. Lakoski SG, Barlow CE, Koelwyn GJ, Hornsby WE, Hernandez J, Defina LF, et al. The influence of adjuvant therapy on cardiorespiratory fitness in early-stage breast cancer seven years after diagnosis: the Cooper Center Longitudinal Study. Breast Cancer Res Treat. 2013;138:909–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Payne D, Mahmood S, Partridge AH, Nohria A, Groarke J. Cardiac autonomic dysfunction in breast cancer survivors. J Clin Oncol. 2017;35:10057.

    Article  Google Scholar 

  53. Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, et al. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities. Circulation. 2000;102:1239–44.

    Article  PubMed  CAS  Google Scholar 

  54. Shetler K, Marcus R, Froelicher VF, Vora S, Kalisetti D, Prakash M, et al. Heart rate recovery: validation and methodologic issues. J Am Coll Cardiol. 2001;38:1980–7.

    Article  PubMed  CAS  Google Scholar 

  55. Cole CR, Foody JM, Blackstone EH, Lauer MS. Heart rate recovery after submaximal exercise testing as a predictor of mortality in a cardiovascularly healthy cohort. Ann Intern Med. 2000;132:552–5.

    Article  PubMed  CAS  Google Scholar 

  56. Morshedi-Meibodi A, Larson MG, Levy D, O'Donnell CJ, Vasan RS. Heart rate recovery after treadmill exercise testing and risk of cardiovascular disease events (The Framingham Heart Study). Am J Cardiol. 2002;90:848–52.

    Article  PubMed  Google Scholar 

  57. Fox K, Ford I, Steg PG, Tendera M, Robertson M, Ferrari R, et al. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet. 2008;372:817–21.

    Article  PubMed  Google Scholar 

  58. Lauer MS. Autonomic function and prognosis. Cleve Clin J Med. 2009;76(Suppl 2):S18–22.

    Article  PubMed  Google Scholar 

  59. Guo Y, Koshy S, Hui D, Palmer JL, Shin K, Bozkurt M, et al. Prognostic value of heart rate variability in patients with cancer. J Clin Neurophysiol. 2015;32:516–20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee DH, Park S, Lim SM, Lee MK, Giovannucci EL, Kim JH, et al. Resting heart rate as a prognostic factor for mortality in patients with breast cancer. Breast Cancer Res Treat. 2016;159:375–84.

    Article  PubMed  Google Scholar 

  61. Crosswell AD, Lockwood KG, Ganz PA, Bower JE. Low heart rate variability and cancer-related fatigue in breast cancer survivors. Psychoneuroendocrinology. 2014;45:58–66.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fagundes CP, Murray DM, Hwang BS, Gouin JP, Thayer JF, Sollers JJ 3rd, et al. Sympathetic and parasympathetic activity in cancer-related fatigue: more evidence for a physiological substrate in cancer survivors. Psychoneuroendocrinology. 2011;36:1137–47.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wolf S, Barton D, Kottschade L, Grothey A, Loprinzi C. Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. Eur J Cancer. 2008;44:1507–15.

    Article  PubMed  CAS  Google Scholar 

  64. Potocnik N, Perse M, Cerar A, Injac R, Finderle Z. Cardiac autonomic modulation induced by doxorubicin in a rodent model of colorectal cancer and the influence of fullerenol pretreatment. PLoS One. 2017;12:e0181632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Snoek JA, van Berkel S, van Meeteren N, Backx FJ, Daanen HA. Effect of aerobic training on heart rate recovery in patients with established heart disease; a systematic review. PLoS One. 2013;8:e83907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Scott JM, Jones LW, Hornsby WE, Koelwyn GJ, Khouri MG, Joy AA, et al. Cancer therapy-induced autonomic dysfunction in early breast cancer: implications for aerobic exercise training. Int J Cardiol. 2014;171:e50–1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Groarke.

Ethics declarations

Conflict of Interest

Ben G.T. Coumbe and John D. Groarke declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coumbe, B.G.T., Groarke, J.D. Cardiovascular Autonomic Dysfunction in Patients with Cancer. Curr Cardiol Rep 20, 69 (2018). https://doi.org/10.1007/s11886-018-1010-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-1010-y

Keywords

Navigation