Skip to main content

Advertisement

Log in

Pediatric Cardio-Oncology: Development of Cancer Treatment-Related Cardiotoxicity and the Therapeutic Approach to Affected Patients

  • Cardio-oncology (MG Fradley, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The past 5 decades have seen significant improvements in outcomes for pediatric patients with cancer. Unfortunately, children and adolescents who have been treated for cancer are five to six times more likely to develop cardiovascular disease as a result of their therapies. Cardiovascular disease may manifest in a plethora of ways, from asymptomatic ventricular dysfunction to end-stage heart failure, hypertension, arrhythmia, valvular disease, early coronary artery disease, or peripheral vascular disease. A number of treatment modalities are implicated in pediatric and adult populations, including anthracyclines, radiation therapy, alkylating agents, targeted cancer therapies (small molecules and antibody therapies), antimetabolites, antimicrotubule agents, immunotherapy, interleukins, and chimeric antigen receptor T cells. For some therapies, such as anthracyclines, the mechanism of injury is elucidated, but for many others it is not. While a few protective strategies exist, in many cases, observation and close monitoring is the only defense against developing end-stage cardiovascular disease. Because of the variety of potential outcomes after cancer therapy, a one-size-fits-all approach is not appropriate. Rather, a good working relationship between oncology and cardiology to assess the risks and benefits of various therapies and planning for appropriate surveillance is the best model. When disease is identified, any of a number of therapies may be appropriate; however, in the pediatric and adolescent population supportive data are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  2. Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2009 (vintage 2009 populations), National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2009_pops09, based on November 2011 SEER data submission, posted to the SEER web site, April 2012.

  3. American Cancer Society. Cancer facts & figures 2019. Atlanta: American Cancer Society; 2019

  4. Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

    Article  PubMed  Google Scholar 

  5. D’Angio GJ. Pediatric cancer in perspective: cure is not enough. Cancer. 1975;35(3 suppl):866–70.

    Article  PubMed  Google Scholar 

  6. Robison LL, Hudson MM. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nat Rev Cancer. 2014;14(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  7. Bloom MW, Hamo CE, Cardinale D, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail. 2016;9(1):e002661.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mulrooney DA, Yeazel MW, Kawashima T, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lipshultz SE, Adams MJ, Colan SD, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128(17):1927–95.

    Article  PubMed  Google Scholar 

  10. Rinehart JJ, Lewis RP, Balcerzak SP. Adriamycin cardiotoxicity in man. Ann Intern Med. 1974;81(4):475–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bristow MR, Mason JW, Billingham ME, Daniels JR. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Ann Intern Med. 1978;88(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  12. Lipshultz SE, Cochran TR, Franco VI, Miller TL. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol. 2013;10(12):697–710.

    Article  CAS  PubMed  Google Scholar 

  13. Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64(9):938–45.

    Article  CAS  PubMed  Google Scholar 

  14. Ganame J, Claus P, Uyttebroeck A, et al. Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr. 2007;20(12):1351–8.

    Article  PubMed  Google Scholar 

  15. Ganame J, Claus P, Eyskens B, et al. Acute cardiac functional and morphological changes after anthracycline infusions in children. Am J Cardiol. 2007;99(7):974–7.

    Article  CAS  PubMed  Google Scholar 

  16. Darby SC, Cutter DJ, Boerma M, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Menezes KM, Wang H, Hada M, Saganti PB. Radiation matters of the heart: a mini review. Front Cardiovasc Med. 2018;5:83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. •• Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67 Review of the effects of new cancer therapies on the cardiovascular system. Although this focuses on adult patients, these medications are becoming more prevalent in pediatric care.

    Article  CAS  PubMed  Google Scholar 

  19. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.

    Article  CAS  PubMed  Google Scholar 

  20. Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52.

    Article  CAS  PubMed  Google Scholar 

  21. FDA approves Gleevec for pediatric leukemia. FDA Consum. 2003;37(4):6.

    Google Scholar 

  22. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    Article  CAS  PubMed  Google Scholar 

  23. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  CAS  PubMed  Google Scholar 

  24. Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer. 2018;17(1):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chaar M, Kamta J, Ait-Oudhia S. Mechanisms, monitoring, and management of tyrosine kinase inhibitors-associated cardiovascular toxicities. Onco Targets Ther. 2018;11:6227–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jain D, Russell RR, Schwartz RG, Panjrath GS, Aronow W. Cardiac complications of cancer therapy: pathophysiology, identification, prevention, treatment, and future directions. Curr Cardiol Rep. 2017;19(5):36.

    Article  PubMed  Google Scholar 

  27. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ewer MS, Suter TM, Lenihan DJ, et al. Cardiovascular events among 1090 cancer patients treated with sunitinib, interferon, or placebo: a comprehensive adjudicated database analysis demonstrating clinically meaningful reversibility of cardiac events. Eur J Cancer. 2014;50(12):2162–70.

    Article  CAS  PubMed  Google Scholar 

  29. Ewer SM, Ewer MS. Cardiotoxicity profile of trastuzumab. Drug Saf. 2008;31(6):459–67.

    Article  CAS  PubMed  Google Scholar 

  30. Schmidinger M, Zielinski CC, Vogl UM, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.

    Article  PubMed  Google Scholar 

  31. Mazzotta M, Krasniqi E, Barchiesi G, et al. Long-term safety and real-world effectiveness of trastuzumab in breast cancer. J Clin Med. 2019;8(2).

    Article  PubMed Central  CAS  Google Scholar 

  32. Ladenstein R, Potschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(12):1617–29.

    Article  CAS  PubMed  Google Scholar 

  33. Grill J, Massimino M, Bouffet E, et al. Phase II, open-label, randomized, multicenter trial (HERBY) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma. J Clin Oncol. 2018;36(10):951–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chisholm JC, Merks JHM, Casanova M, et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur J Cancer. 2017;83:177–84.

    Article  CAS  PubMed  Google Scholar 

  35. Zhukova N, Rajagopal R, Lam A, et al. Use of bevacizumab as a single agent or in adjunct with traditional chemotherapy regimens in children with unresectable or progressive low-grade glioma. Cancer Med. 2019;8(1):40–50.

    Article  CAS  PubMed  Google Scholar 

  36. Chen ZI, Ai DI. Cardiotoxicity associated with targeted cancer therapies. Mol Clin Oncol. 2016;4(5):675–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guglin M, Munster P, Fink A, Krischer J. Lisinopril or Coreg CR in reducing cardiotoxicity in women with breast cancer receiving trastuzumab: a rationale and design of a randomized clinical trial. Am Heart J. 2017;188:87–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jain V, Bahia J, Mohebtash M, Barac A. Cardiovascular complications associated with novel cancer immunotherapies. Curr Treat Options Cardiovasc Med. 2017;19(5):36.

    Article  PubMed  Google Scholar 

  40. Kerr WG, Chisholm JD. The next generation of immunotherapy for cancer: small molecules could make big waves. J Immunol. 2019;202(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  41. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med. 2016;4(14):261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Heinzerling L, Ott PA, Hodi FS, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4:50.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Behling J, Kaes J, Munzel T, Grabbe S, Loquai C. New-onset third-degree atrioventricular block because of autoimmune-induced myositis under treatment with anti-programmed cell death-1 (nivolumab) for metastatic melanoma. Melanoma Res. 2017;27(2):155–8.

    Article  CAS  PubMed  Google Scholar 

  45. Laubli H, Balmelli C, Bossard M, Pfister O, Glatz K, Zippelius A. Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J Immunother Cancer. 2015;3:11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Semper H, Muehlberg F, Schulz-Menger J, Allewelt M, Grohe C. Drug-induced myocarditis after nivolumab treatment in a patient with PDL1- negative squamous cell carcinoma of the lung. Lung Cancer. 2016;99:117–9.

    Article  CAS  PubMed  Google Scholar 

  47. • Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64. Review of myocarditis with new agents, checkpoint inhibitors. This is a rare, but potentially fatal, side effect of this medication class.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–68 Management approach for toxicity related to checkpoint inhibitors, including specific cardiovascular guidelines.

    Article  CAS  PubMed  Google Scholar 

  49. • Mahadeo KM, Khazal SJ, Abdel-Azim H, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63. Manageme nt guidelines for monitoring and treatment in patients receiving CAR-T cell therapy. This includes cardiovascular morbidities.

    Article  CAS  PubMed  Google Scholar 

  50. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Burstein DS, Maude S, Grupp S, Griffis H, Rossano J, Lin K. Cardiac profile of chimeric antigen receptor t cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–5.

    Article  PubMed  Google Scholar 

  53. Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor t cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):e124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. •• van Dalen EC, van der Pal HJ, Kremer LC. Different dosage schedules for reducing cardiotoxicity in people with cancer receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2016;3:CD005008 Meta-analysis of studies assessing the cardioprotective effect of various anthracycline dosing strategies.

    PubMed  Google Scholar 

  55. Steinherz PG, Redner A, Steinherz L, Meyers P, Tan C, Heller G. Development of a new intensive therapy for acute lymphoblastic leukemia in children at increased risk of early relapse. The Memorial Sloan-Kettering-New York-II protocol. Cancer. 1993;72(10):3120–30.

    Article  CAS  PubMed  Google Scholar 

  56. Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol. 2002;20(6):1677–82.

    Article  CAS  PubMed  Google Scholar 

  57. Escherich G, Gobel U, Jorch N, Spaar HJ, Janka-Schaub GE. Daunorubicin-induced cell kill with 1-hour versus 24-hour infusions: a randomized comparison in children with newly diagnosed acute lymphoblastic leukemia. Klin Padiatr. 2007;219(3):134–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lipshultz SE, Miller TL, Lipsitz SR, et al. Continuous versus bolus infusion of doxorubicin in children with all: long-term cardiac outcomes. Pediatrics. 2012;130(6):1003–11.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  60. Lipshultz SE, Miller TL, Scully RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30(10):1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lipshultz SE, Scully RE, Lipsitz SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010;11(10):950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wexler LH. Ameliorating anthracycline cardiotoxicity in children with cancer: clinical trials with dexrazoxane. Semin Oncol. 1998;25(4 Suppl 10):86–92.

    CAS  PubMed  Google Scholar 

  63. • Schuler MK, Gerdes S, West A, et al. Efficacy and safety of dexrazoxane (DRZ) in sarcoma patients receiving high cumulative doses of anthracycline therapy - a retrospective study including 32 patients. BMC Cancer. 2016;16:619. Study of dexrazoxane for cardio-protection in adult patients receiving high-dose anthracycline chemotherapy and with pre-existing heart failure. Overall survival was good, and cardiac side effects were rare.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Schwartz CL, Wexler LH, Krailo MD, et al. Intensified chemotherapy with dexrazoxane cardioprotection in newly diagnosed nonmetastatic osteosarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2016;63(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  65. Huh WW, Jaffe N, Durand JB, Munsell MF, Herzog CE. Comparison of doxorubicin cardiotoxicity in pediatric sarcoma patients when given with dexrazoxane versus as continuous infusion. Pediatr Hematol Oncol. 2010;27(7):546–57.

    Article  CAS  PubMed  Google Scholar 

  66. Walker DM, Fisher BT, Seif AE, et al. Dexrazoxane use in pediatric patients with acute lymphoblastic or myeloid leukemia from 1999 and 2009: analysis of a national cohort of patients in the Pediatric Health Information Systems database. Pediatr Blood Cancer. 2013;60(4):616–20.

    Article  CAS  PubMed  Google Scholar 

  67. Chow EJ, Asselin BL, Schwartz CL, et al. Late mortality after dexrazoxane treatment: a report from the Children’s Oncology Group. J Clin Oncol. 2015;33:2639–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. •• Asselin BL, Devidas M, Chen L, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed t cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-hodgkin lymphoma: a report of the Children’s Oncology Group Randomized Trial Pediatric Oncology Group 9404. J Clin Oncol. 2016;34(8):854–62 Review of registry data regarding efficacy and safety of dexrazoxane in pediatric patients.

    Article  CAS  PubMed  Google Scholar 

  69. Seif AE, Walker DM, Li Y, et al. Dexrazoxane exposure and risk of secondary acute myeloid leukemia in pediatric oncology patients. Pediatr Blood Cancer. 2015;62(4):704–9.

    Article  CAS  PubMed  Google Scholar 

  70. •• Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy [A study that validates the concept that early detection and intervention on anthracycline toxicity improves outcomes]. Circulation. 2015;131(22) 1981–1988. Manuscript on which adult practice is, in part, based regarding early initiation of therapy in patients with asymptomatic cardiac dysfunction after anthracycline exposure.

    Article  CAS  PubMed  Google Scholar 

  71. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  CAS  PubMed  Google Scholar 

  72. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60(23):2384–90.

    Article  CAS  PubMed  Google Scholar 

  73. Silber JH, Cnaan A, Clark BJ, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22(5):820–8.

    Article  CAS  PubMed  Google Scholar 

  74. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    Article  CAS  PubMed  Google Scholar 

  75. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607–13.

    Article  CAS  PubMed  Google Scholar 

  76. • Armenian SH, Hudson MM, Chen MH, et al. Rationale and design of the Children’s Oncology Group (COG) study ALTE1621: a randomized, placebo-controlled trial to determine if low-dose carvedilol can prevent anthracycline-related left ventricular remodeling in childhood cancer survivors at high risk for developing heart failure. BMC Cardiovasc Disord. 2016;16(1):187. Ongoing study enrolling survivors of childhood cancer to assess the effect of carvedilol to prevent anthracycline-related cardiac dysfunction. This study also has bulit in studies to allow assessment of ventricular function throughout therapy, which is not currently well described.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen JJ, Wu PT, Middlekauff HR, Nguyen KL. Aerobic exercise in anthracycline-induced cardiotoxicity: a systematic review of current evidence and future directions. Am J Physiol Heart Circ Physiol. 2017;312(2):H213–22.

    Article  PubMed  Google Scholar 

  78. •• Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801 Guidelines from the European Society for Cardiology regarding management of patients (adult) after exposure to cardiotoxic cancer therapy.

    Article  PubMed  Google Scholar 

  79. •• Armenian SH, Lacchetti C, Barac A, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911 Management guidelines for cardiovascular surveillance of adult patients who are survivors of pediatric cancer.

    Article  PubMed  Google Scholar 

  80. Barac A, Murtagh G, Carver JR, et al. Cardiovascular health of patients with cancer and cancer survivors: a roadmap to the next level. J Am Coll Cardiol. 2015;65(25):2739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  81. van Dalen EC, van den Brug M, Caron HN, Kremer LC. Anthracycline-induced cardiotoxicity: comparison of recommendations for monitoring cardiac function during therapy in paediatric oncology trials. Eur J Cancer. 2006;42(18):3199–205.

    Article  PubMed  CAS  Google Scholar 

  82. •• Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapyManuscript on which adult practice is, in part, based regarding early initiation of therapy in patients with asymptomatic cardiac dysfunction after anthracycline exposure. Circulation. 2015;131(22):1981–8.

    Article  CAS  PubMed  Google Scholar 

  83. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    Article  CAS  PubMed  Google Scholar 

  84. • Getz KD, Sung L, Ky B, et al. Occurrence of treatment-related cardiotoxicity and its impact on outcomes among children treated in the AAML0531 Clinical Trial: a report From the Children’s Oncology Group. J Clin Oncol. 2019;37(1):12–21 Study demonstrating that on-protocol cardiotoxicity decreases overall survival during 5 years of follow-up in pediatric cancer patients.

    Article  CAS  PubMed  Google Scholar 

  85. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27(9):911–39.

    Article  PubMed  Google Scholar 

  86. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A:2751–68.

    Article  PubMed  Google Scholar 

  87. Armstrong GT, Plana JC, Zhang N, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yu AF, Raikhelkar J, Zabor EC, et al. Two-dimensional speckle tracking echocardiography detects subclinical left ventricular systolic dysfunction among adult survivors of childhood, adolescent, and young adult cancer. Biomed Res Int. 2016;2016:9363951.

    PubMed  PubMed Central  Google Scholar 

  89. Armenian SH, Hudson MM, Mulder RL, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–36.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pignatelli RH, Ghazi P, Reddy SC, et al. Abnormal myocardial strain indices in children receiving anthracycline chemotherapy. Pediatr Cardiol. 2015;36(8):1610–6.

    Article  PubMed  Google Scholar 

  91. Tham EB, Haykowsky MJ, Chow K, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mavinkurve-Groothuis AM, Kapusta L, Nir A, Groot-Loonen J. The role of biomarkers in the early detection of anthracycline-induced cardiotoxicity in children: a review of the literature. Pediatr Hematol Oncol. 2008;25(7):655–64.

    Article  CAS  PubMed  Google Scholar 

  93. Mavinkurve-Groothuis AM, Groot-Loonen J, Bellersen L, et al. Abnormal NT-pro-BNP levels in asymptomatic long-term survivors of childhood cancer treated with anthracyclines. Pediatr Blood Cancer. 2009;52(5):631–6.

    Article  PubMed  Google Scholar 

  94. Sherief LM, Kamal AG, Khalek EA, Kamal NM, Soliman AA, Esh AM. Biomarkers and early detection of late onset anthracycline-induced cardiotoxicity in children. Hematology. 2012;17(3):151–6.

    Article  CAS  PubMed  Google Scholar 

  95. Visscher H, Ross CJ, Rassekh SR, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012;30(13):1422–8.

    Article  PubMed  Google Scholar 

  96. Blanco JG, Sun CL, Landier W, et al. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(13):1415–21.

    Article  CAS  PubMed  Google Scholar 

  97. Aminkeng F, Bhavsar AP, Visscher H, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Visscher H, Rassekh SR, Sandor GS, et al. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics. 2015;16(10):1065–76.

    Article  CAS  PubMed  Google Scholar 

  99. Sieswerda E, van Dalen EC, Postma A, Cheuk DK, Caron HN, Kremer LC. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev 2011;(9):CD008011.

  100. Conway A, McCarthy AL, Lawrence P, Clark RA. The prevention, detection and management of cancer treatment-induced cardiotoxicity: a meta-review. BMC Cancer. 2015;15:366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Harrington JK, Richmond ME, Fein AW, Kobsa S, Satwani P, Shah A. Two-dimensional speckle tracking echocardiography-derived strain measurements in survivors of childhood cancer on angiotensin converting enzyme inhibition or receptor blockade. Pediatr Cardiol. 2018;39(7):1404–12.

    Article  PubMed  Google Scholar 

  102. Carver JR, Szalda D, Ky B. Asymptomatic cardiac toxicity in long-term cancer survivors: defining the population and recommendations for surveillance. Semin Oncol. 2013;40(2):229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bansal N, Amdani SM, Hutchins KK, Lipshultz SE. Cardiovascular disease in survivors of childhood cancer. Curr Opin Pediatr. 2018;30(5):628–38.

    Article  CAS  PubMed  Google Scholar 

  104. Lipshultz SE, Colan SD. Cardiovascular trials in long-term survivors of childhood cancer. J Clin Oncol. 2004;22(5):769–73.

    Article  PubMed  Google Scholar 

  105. Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. The Journal of heart and lung transplantation: the official publication of the International Society for Heart. Transplantation. 2016;35(1):1–23.

    Google Scholar 

  106. Musci M, Loebe M, Grauhan O, et al. Heart transplantation for doxorubicin-induced congestive heart failure in children and adolescents. Transplant Proc. 1997;29(1–2):578–9.

    Article  CAS  PubMed  Google Scholar 

  107. Bock MJ, Pahl E, Rusconi PG, et al. Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: a report from the Pediatric Heart Transplant Study (PHTS) group. Pediatr Transplant. 2017.

  108. Cavigelli-Brunner A, Schweiger M, Knirsch W, et al. VAD as bridge to recovery in anthracycline-induced cardiomyopathy and HHV6 myocarditis. Pediatrics. 2014;134(3):e894–9.

    Article  PubMed  Google Scholar 

  109. Bianco CM, Al-Kindi SG, Oliveira GH. Advanced heart failure therapies for cancer therapeutics-related cardiac dysfunction. Heart Fail Clin. 2017;13(2):327–36.

    Article  PubMed  Google Scholar 

  110. Hutchins KK, Siddeek H, Franco VI, Lipshultz SE. Prevention of cardiotoxicity among survivors of childhood cancer. Br J Clin Pharmacol. 2017;83(3):455–65.

    Article  PubMed  Google Scholar 

  111. • Fisher RS, Rausch JR, Ferrante AC, et al. Trajectories of health behaviors across early childhood cancer survivorship. Psychooncology. 2019;28(1):68–75. Study of the early survivorship period after childhood cancer, demonstrating that preventive health care and behaviors are below expected, and suggesting intervention on behalf of providers.

    Article  PubMed  Google Scholar 

  112. Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2362–71.

    Article  PubMed  Google Scholar 

  113. Kostakou PM, Kouris NT, Kostopoulos VS, Damaskos DS, Olympios CD. Cardio-oncology: a new and developing sector of research and therapy in the field of cardiology. Heart Fail Rev. 2019;24(1):91–100.

    Article  PubMed  Google Scholar 

  114. Mavinkurve-Groothuis AM, Groot-Loonen J, Marcus KA, et al. Myocardial strain and strain rate in monitoring subclinical heart failure in asymptomatic long-term survivors of childhood cancer. Ultrasound Med Biol. 2010;36(11):1783–91.

    Article  PubMed  Google Scholar 

  115. Corella Aznar EG, Ayerza Casas A, Jimenez Montanes L, Calvo Escribano MAC, Labarta Aizpun JI, Samper Villagrasa P. Use of speckle tracking in the evaluation of late subclinical myocardial damage in survivors of childhood acute leukaemia. Int J Card Imaging. 2018;34(9):1373–81.

    Article  Google Scholar 

  116. Cetin S, Babaoglu K, Basar EZ, Deveci M, Corapcioglu F. Subclinical anthracycline-induced cardiotoxicity in long-term follow-up of asymptomatic childhood cancer survivors: assessment by speckle tracking echocardiography. Echocardiography. 2018;35(2):234–40.

    Article  PubMed  Google Scholar 

  117. Armstrong GT, Chen Y, Yasui Y, et al. Reduction in late mortality among 5-year survivors of childhood cancer. N Engl J Med. 2016;374(9):833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gibson TM, Mostoufi-Moab S, Stratton KL, et al. Temporal patterns in the risk of chronic health conditions in survivors of childhood cancer diagnosed 1970–99: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2018;19(12):1590–601.

    Article  PubMed  PubMed Central  Google Scholar 

  119. •• Feijen E, Font-Gonzalez A, Van der Pal HJH, et al. Risk and temporal changes of heart failure among 5-year childhood cancer survivors: a DCOG-LATER Study. J Am Heart Assoc. 2019;8(1):e009122 Evidence that despite overall decreases in treatment co-morbidities, there is an increase in severe heart failure in survivors of pediatric cancer.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Ryan MD, PhD.

Ethics declarations

Conflict of Interest

Thomas D. Ryan, Rajaram Nagarajan, and Justin Godown declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, T.D., Nagarajan, R. & Godown, J. Pediatric Cardio-Oncology: Development of Cancer Treatment-Related Cardiotoxicity and the Therapeutic Approach to Affected Patients. Curr. Treat. Options in Oncol. 20, 56 (2019). https://doi.org/10.1007/s11864-019-0658-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-019-0658-x

Keywords

Navigation