Skip to main content

Pediatric Cardio-Oncology

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

The past five decades have seen significant improvements in outcomes for pediatric patients with cancer. Unfortunately, children and adolescents who have been treated for cancer are significantly more likely to develop cardiovascular disease as a result of their therapies. This may manifest in a plethora of ways, from asymptomatic ventricular dysfunction to end-stage heart failure, hypertension, arrhythmia, valvular disease, early coronary artery disease, or peripheral vascular disease. A number of treatment modalities are implicated in pediatric and adult populations, including anthracyclines, radiation therapy, alkylating agents, targeted cancer therapies, antimetabolites, antimicrotubule agents, immunotherapy, interleukins, and chimeric antigen receptor T cells. For some therapies, such as anthracyclines, the mechanism of injury is elucidated, but for many others it is not. While protective strategies exist, in many cases observation and close monitoring is the only defense against developing end-stage cardiovascular disease. A good working relationship between Oncology and Cardiology to assess the risks and benefits of various therapies and planning for appropriate surveillance is the best model. When disease is identified, any of a number of therapies may be appropriate; however, in the pediatric and adolescent population supportive data are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.

    Article  PubMed  Google Scholar 

  2. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.

    Article  PubMed  Google Scholar 

  3. Bloom MW, Hamo CE, Cardinale D, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail. 2016;9(1):e002661.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mulrooney DA, Yeazel MW, Kawashima T, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lipshultz SE, Adams MJ, Colan SD, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128(17):1927–95.

    Article  PubMed  Google Scholar 

  6. Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31(29):3673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ness KK, Plana JC, Joshi VM, et al. Exercise intolerance, mortality, and organ system impairment in adult survivors of childhood cancer. J Clin Oncol. 2020;38(1):29–42.

    Article  PubMed  Google Scholar 

  8. Babiker HM, McBride A, Newton M, et al. Cardiotoxic effects of chemotherapy: a review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit Rev Oncol Hematol. 2018;126:186–200.

    Article  PubMed  Google Scholar 

  9. Ryan TD, Nagarajan R, Godown J. Pediatric cardio-oncology: development of cancer treatment-related cardiotoxicity and the therapeutic approach to affected patients. Curr Treat Options in Oncol. 2019;20(7):56.

    Article  Google Scholar 

  10. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213–25.

    Article  PubMed  Google Scholar 

  11. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32(2):302–14.

    Article  PubMed  Google Scholar 

  12. Rinehart JJ, Lewis RP, Balcerzak SP. Adriamycin cardiotoxicity in man. Ann Intern Med. 1974;81(4):475–8.

    Article  PubMed  Google Scholar 

  13. Bristow MR, Mason JW, Billingham ME, Daniels JR. Doxorubicin cardiomyopathy: evaluation by phonocardiography, endomyocardial biopsy, and cardiac catheterization. Ann Intern Med. 1978;88(2):168–75.

    Article  PubMed  Google Scholar 

  14. Lipshultz SE, Cochran TR, Franco VI, Miller TL. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol. 2013;10(12):697–710.

    Article  PubMed  Google Scholar 

  15. Burridge PW, Li YF, Matsa E, et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22(5):547–56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Moslehi J, Amgalan D, Kitsis RN. Grounding cardio-oncology in basic and clinical science. Circulation. 2017;136(1):3–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64(9):938–45.

    Article  PubMed  Google Scholar 

  18. Ganame J, Claus P, Eyskens B, et al. Acute cardiac functional and morphological changes after anthracycline infusions in children. Am J Cardiol. 2007;99(7):974–7.

    Article  PubMed  Google Scholar 

  19. Ganame J, Claus P, Uyttebroeck A, et al. Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr. 2007;20(12):1351–8.

    Article  PubMed  Google Scholar 

  20. Feijen EAM, Leisenring WM, Stratton KL, et al. Derivation of anthracycline and anthraquinone equivalence ratios to doxorubicin for late-onset cardiotoxicity. JAMA Oncol. 2019;5(6):864–71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.

    Article  PubMed  Google Scholar 

  22. Darby SC, Cutter DJ, Boerma M, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mulrooney DA, Hyun G, Ness KK, et al. Major cardiac events for adult survivors of childhood cancer diagnosed between 1970 and 1999: report from the Childhood Cancer Survivor Study cohort. BMJ. 2020;368:l6794.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Menezes KMWH, Hada M, Saganti PB. Radiation matters of the heart: a mini review. Front Cardiovasc Med. 2018;5(83). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046516/.

  25. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375(15):1457–67.

    Article  PubMed  Google Scholar 

  26. Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang Y-S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer 2018;17(1):36.

    Google Scholar 

  27. Adamson PC. Improving the outcome for children with cancer: development of targeted new agents. CA Cancer J Clin. 2015;65(3):212–20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.

    Article  PubMed  Google Scholar 

  29. Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52.

    Article  PubMed  Google Scholar 

  30. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    Article  PubMed  Google Scholar 

  31. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving Imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  PubMed  Google Scholar 

  32. Chaar M, Kamta J, Ait-Oudhia S. Mechanisms, monitoring, and management of tyrosine kinase inhibitors-associated cardiovascular toxicities. Onco Targets Ther. 2018;11:6227–37.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jain D, Russell RR, Schwartz RG, Panjrath GS, Aronow W. Cardiac complications of cancer therapy: pathophysiology, identification, prevention, treatment, and future directions. Curr Cardiol Rep. 2017;19(5):36.

    Article  PubMed  Google Scholar 

  34. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ewer MS, Suter TM, Lenihan DJ, et al. Cardiovascular events among 1090 cancer patients treated with sunitinib, interferon, or placebo: a comprehensive adjudicated database analysis demonstrating clinically meaningful reversibility of cardiac events. Eur J Cancer. 2014;50(12):2162–70.

    Article  PubMed  Google Scholar 

  36. Ladenstein R, Pötschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(12):1617–29.

    Article  PubMed  Google Scholar 

  37. Grill J, Massimino M, Bouffet E, et al. Phase II, open-label, randomized, multicenter trial (HERBY) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma. J Clin Oncol. 2018;36(10):951–8.

    Article  PubMed  Google Scholar 

  38. Chisholm JC, Merks JHM, Casanova M, et al. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and adolescent patients with metastatic soft tissue sarcoma (the BERNIE study). Eur J Cancer. 2017;83:177–84.

    Article  PubMed  Google Scholar 

  39. Chen ZI, Ai DI. Cardiotoxicity associated with targeted cancer therapies. Mol Clin Oncol. 2016;4(5):675–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mazzotta M, Krasniqi E, Barchiesi G, et al. Long-term safety and real-world effectiveness of Trastuzumab in breast cancer. J Clin Med. 2019;8(2)

    Google Scholar 

  41. Ladenstein R, Potschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(12):1617–29.

    Article  PubMed  Google Scholar 

  42. Zhukova N, Rajagopal R, Lam A, et al. Use of bevacizumab as a single agent or in adjunct with traditional chemotherapy regimens in children with unresectable or progressive low-grade glioma. Cancer Med. 2019;8(1):40–50.

    Article  PubMed  Google Scholar 

  43. Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guglin M, Munster P, Fink A, Krischer J. Lisinopril or Coreg CR in reducing cardiotoxicity in women with breast cancer receiving trastuzumab: a rationale and design of a randomized clinical trial. Am Heart J. 2017;188:87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kerr WG, Chisholm JD. The next generation of immunotherapy for cancer: small molecules could make big waves. J Immunol. 2019;202(1):11.

    Article  PubMed  Google Scholar 

  46. Jain V, Bahia J, Mohebtash M, Barac A. Cardiovascular complications associated with novel cancer immunotherapies. Curr Treat Options Cardiovasc Med. 2017;19(5):36.

    Article  PubMed  Google Scholar 

  47. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375(18):1749–55.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heinzerling L, Ott PA, Hodi FS, et al. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Behling J, Kaes J, Münzel T, Grabbe S, Loquai C. New-onset third-degree atrioventricular block because of autoimmune-induced myositis under treatment with anti-programmed cell death-1 (nivolumab) for metastatic melanoma. Melanoma Res. 2017;27(2):155–8.

    Article  PubMed  Google Scholar 

  50. Läubli H, Balmelli C, Bossard M, Pfister O, Glatz K, Zippelius A. Acute heart failure due to autoimmune myocarditis under pembrolizumab treatment for metastatic melanoma. J Immunother Cancer. 2015;3(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Semper H, Muehlberg F, Schulz-Menger J, Allewelt M, Grohé C. Drug-induced myocarditis after nivolumab treatment in a patient with PDL1- negative squamous cell carcinoma of the lung. Lung Cancer. 2016;99:117–9.

    Article  PubMed  Google Scholar 

  52. Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mahadeo KM, Khazal SJ, Abdel-Azim H, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63.

    Article  PubMed  Google Scholar 

  54. Grupp SA, Kalos M, Barrett D, et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med 2013;368(16):1509–1518.

    Google Scholar 

  55. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Burstein DS, Maude S, Grupp S, Griffis H, Rossano J, Lin K. Cardiac profile of chimeric antigen receptor T cell therapy in children: a single-institution experience. Biol Blood Marrow Transplant. 2018;24(8):1590–5.

    Article  PubMed  Google Scholar 

  57. Fitzgerald JC, Weiss SL, Maude SL, et al. Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med. 2017;45(2):e124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Carver JR, Szalda D, Ky B. Asymptomatic cardiac toxicity in long-term cancer survivors: defining the population and recommendations for surveillance. Semin Oncol. 2013;40(2):229–38.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for practice guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801.

    Article  PubMed  Google Scholar 

  60. Chow EJ, Chen Y, Kremer LC, et al. Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol. 2015;33(5):394–402.

    Article  PubMed  Google Scholar 

  61. Mulrooney DA, Armstrong GT, Huang S, et al. Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy: a cross-sectional study. Ann Intern Med. 2016;164(2):93–101.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chow EJ, Chen Y, Hudson MM, et al. Prediction of ischemic heart disease and stroke in survivors of childhood cancer. J Clin Oncol. 2018;36(1):44–52.

    Article  PubMed  Google Scholar 

  63. Armenian SH, Lacchetti C, Barac A, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35(8):893–911.

    Article  PubMed  Google Scholar 

  64. Barac A, Murtagh G, Carver JR, et al. Cardiovascular health of patients with cancer and cancer survivors: a roadmap to the next level. J Am Coll Cardiol. 2015;65(25):2739–46.

    Article  PubMed  PubMed Central  Google Scholar 

  65. van Dalen EC, van der Pal HJ, Kremer LC. Different dosage schedules for reducing cardiotoxicity in people with cancer receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2016;3:CD005008.

    PubMed  Google Scholar 

  66. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8.

    Article  PubMed  Google Scholar 

  67. Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.

    Article  PubMed  Google Scholar 

  68. Getz KD, Sung L, Ky B, et al. Occurrence of treatment-related cardiotoxicity and its impact on outcomes among children treated in the AAML0531 clinical trial: a report from the Children’s Oncology Group. J Clin Oncol. 2018;37(1):12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Armenian SH, Hudson MM, Mulder RL, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015;16(3):e123–36.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25 Pt A):2751–68.

    Article  PubMed  Google Scholar 

  71. Pignatelli RH, Ghazi P, Reddy SC, et al. Abnormal myocardial strain indices in children receiving anthracycline chemotherapy. Pediatr Cardiol. 2015;36(8):1610–6.

    Article  PubMed  Google Scholar 

  72. Akam-Venkata J, Kadiu G, Galas J, Lipshultz SE, Aggarwal S. Left ventricle segmental function in childhood cancer survivors using speckle-tracking echocardiography. Cardiol Young. 2019;29(12):1494–500.

    Article  PubMed  Google Scholar 

  73. Slieker MG, Fackoury C, Slorach C, et al. Echocardiographic assessment of cardiac function in pediatric survivors of anthracycline-treated childhood cancer. Circ Cardiovasc Imaging. 2019;12(12):e008869.

    Article  PubMed  Google Scholar 

  74. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27(9):911–39.

    Article  PubMed  Google Scholar 

  75. Armstrong GT, Plana JC, Zhang N, et al. Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 2012;30(23):2876–84.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yu AF, Raikhelkar J, Zabor EC, et al. Two-dimensional speckle tracking echocardiography detects subclinical left ventricular systolic dysfunction among adult survivors of childhood, adolescent, and young adult cancer. Biomed Res Int. 2016;2016:9363951.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ylanen K, Poutanen T, Savikurki-Heikkila P, Rinta-Kiikka I, Eerola A, Vettenranta K. Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol. 2013;61(14):1539–47.

    Article  PubMed  Google Scholar 

  78. Galán-Arriola C, Lobo M, Vílchez-Tschischke JP, et al. Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol. 2019;73(7):779–91.

    Article  PubMed  Google Scholar 

  79. Tham EB, Haykowsky MJ, Chow K, et al. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson. 2013;15:48.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–53.

    Article  PubMed  Google Scholar 

  81. Mavinkurve-Groothuis AM, Kapusta L, Nir A, Groot-Loonen J. The role of biomarkers in the early detection of anthracycline-induced cardiotoxicity in children: a review of the literature. Pediatr Hematol Oncol. 2008;25(7):655–64.

    Article  PubMed  Google Scholar 

  82. Lipshultz SE, Scully RE, Lipsitz SR, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010;11(10):950–61.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lipshultz SE, Miller TL, Scully RE, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30(10):1042–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mavinkurve-Groothuis AM, Groot-Loonen J, Bellersen L, et al. Abnormal NT-pro-BNP levels in asymptomatic long-term survivors of childhood cancer treated with anthracyclines. Pediatr Blood Cancer. 2009;52(5):631–6.

    Article  PubMed  Google Scholar 

  85. Sherief LM, Kamal AG, Khalek EA, Kamal NM, Soliman AA, Esh AM. Biomarkers and early detection of late onset anthracycline-induced cardiotoxicity in children. Hematology. 2012;17(3):151–6.

    Article  PubMed  Google Scholar 

  86. Michel L, Mincu RI, Mrotzek SM, et al. Cardiac biomarkers for the detection of cardiotoxicity in childhood cancer-a meta-analysis. ESC Heart Fail. 2020;

    Google Scholar 

  87. Hellmann F, Voller S, Krischke M, et al. Genetic polymorphisms affecting cardiac biomarker concentrations in children with cancer: an analysis from the “European Paediatric Oncology Off-patents Medicines Consortium” (EPOC) trial. Eur J Drug Metab Pharmacokinet. 2020;

    Google Scholar 

  88. Jarfelt M, Kujacic V, Holmgren D, Bjarnason R, Lannering B. Exercise echocardiography reveals subclinical cardiac dysfunction in young adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;49(6):835–40.

    Article  PubMed  Google Scholar 

  89. De Caro E, Smeraldi A, Trocchio G, Calevo M, Hanau G, Pongiglione G. Subclinical cardiac dysfunction and exercise performance in childhood cancer survivors. Pediatr Blood Cancer. 2011;56(1):122–6.

    Article  PubMed  Google Scholar 

  90. Ryerson AB, Border WL, Wasilewski-Masker K, et al. Assessing anthracycline-treated childhood cancer survivors with advanced stress echocardiography. Pediatr Blood Cancer. 2015;62(3):502–8.

    Article  PubMed  Google Scholar 

  91. Christiansen JR, Kanellopoulos A, Lund MB, et al. Impaired exercise capacity and left ventricular function in long-term adult survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62(8):1437–43.

    Article  PubMed  Google Scholar 

  92. Kaneko S, Tham EB, Haykowsky MJ, et al. Impaired left ventricular reserve in childhood cancer survivors treated with anthracycline therapy. Pediatr Blood Cancer. 2016;63(6):1086–90.

    Article  PubMed  Google Scholar 

  93. Powell AW, Nagarajan R, Mays WA, et al. Cardiopulmonary aerobic fitness assessment during maximal and submaximal exercise testing in pediatric oncology patients after chemotherapy. Am J Clin Oncol. 2018;

    Google Scholar 

  94. Steinherz PG, Redner A, Steinherz L, Meyers P, Tan C, Heller G. Development of a new intensive therapy for acute lymphoblastic leukemia in children at increased risk of early relapse. The memorial Sloan-Kettering-New York-II protocol. Cancer. 1993;72(10):3120–30.

    Article  PubMed  Google Scholar 

  95. Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 acute lymphoblastic leukemia protocol. J Clin Oncol. 2002;20(6):1677–82.

    Article  PubMed  Google Scholar 

  96. Escherich G, Gobel U, Jorch N, Spaar HJ, Janka-Schaub GE. Daunorubicin-induced cell kill with 1-hour versus 24-hour infusions: a randomized comparison in children with newly diagnosed acute lymphoblastic leukemia. Klin Padiatr. 2007;219(3):134–8.

    Article  PubMed  Google Scholar 

  97. Lipshultz SE, Miller TL, Lipsitz SR, et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130(6):1003–11.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wexler LH. Ameliorating anthracycline cardiotoxicity in children with cancer: clinical trials with dexrazoxane. Semin Oncol. 1998;25(4 Suppl 10):86–92.

    PubMed  Google Scholar 

  99. Walker DM, Fisher BT, Seif AE, et al. Dexrazoxane use in pediatric patients with acute lymphoblastic or myeloid leukemia from 1999 and 2009: analysis of a national cohort of patients in the pediatric health information systems database. Pediatr Blood Cancer. 2013;60(4):616–20.

    Article  PubMed  Google Scholar 

  100. Chow EJ, Asselin BL, Schwartz CL, et al. Late mortality after dexrazoxane treatment: a report from the Children’s Oncology Group. J Clin Oncol 2015.

    Google Scholar 

  101. Lipshultz Steven E, Law Yuk M, Asante-Korang A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association. Circulation. 2019;140(1):e9–e68.

    PubMed  Google Scholar 

  102. Lipshultz SE, Franco VI, Sallan SE, et al. Dexrazoxane for reducing anthracycline-related cardiotoxicity in children with cancer: an update of the evidence. Prog Pediatr Cardiol. 2014;36(1):39–49.

    Article  Google Scholar 

  103. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy [A study that validates the concept that early detection and intervention on anthracycline toxicity improves outcomes]. Circulation. 2015;131(22):1981–8.

    Article  PubMed  Google Scholar 

  104. Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

    Article  PubMed  Google Scholar 

  105. Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol. 2012;60(23):2384–90.

    Article  PubMed  Google Scholar 

  106. Silber JH, Cnaan A, Clark BJ, et al. Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol. 2004;22(5):820–8.

    Article  PubMed  Google Scholar 

  107. El-Shitany NA, Tolba OA, El-Shanshory MR, El-Hawary EE. Protective effect of carvedilol on adriamycin-induced left ventricular dysfunction in children with acute lymphoblastic leukemia. J Card Fail. 2012;18(8):607–13.

    Article  PubMed  Google Scholar 

  108. Armenian SH, Hudson MM, Chen MH, et al. Rationale and design of the Children’s oncology group (COG) study ALTE1621: a randomized, placebo-controlled trial to determine if low-dose carvedilol can prevent anthracycline-related left ventricular remodeling in childhood cancer survivors at high risk for developing heart failure. BMC Cardiovasc Disord. 2016;16(1):187.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ness KK, Leisenring WM, Huang S, et al. Predictors of inactive lifestyle among adult survivors of childhood cancer. Cancer. 2009;115(9):1984–94.

    Article  PubMed  Google Scholar 

  110. Meacham LR, Sklar CA, Li S, et al. Diabetes mellitus in long-term survivors of childhood cancer: increased risk associated with radiation therapy: a report for the childhood cancer survivor study. Arch Intern Med. 2009;169(15):1381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Neville KA, Cohn RJ, Steinbeck KS, Johnston K, Walker JL. Hyperinsulinemia, impaired glucose tolerance, and diabetes mellitus in survivors of childhood cancer: prevalence and risk factors. J Clin Endocrinol Metab. 2006;91(11):4401–7.

    Article  PubMed  Google Scholar 

  112. Gilchrist SC, Barac A, Ades PA, et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. Circulation. 2019;139(21):e997–e1012.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fisher RS, Rausch JR, Ferrante AC, et al. Trajectories of health behaviors across early childhood cancer survivorship. Psychooncology. 2019;28(1):68–75.

    Article  PubMed  Google Scholar 

  114. Hayek S, Gibson TM, Leisenring WM, et al. Prevalence and predictors of frailty in childhood cancer survivors and siblings: a report from the childhood cancer survivor study. J Clin Oncol. 2020;38(3):232–47.

    Article  PubMed  Google Scholar 

  115. Scott JM, Li N, Liu Q, et al. Association of exercise with mortality in adult survivors of childhood cancer. JAMA Oncol. 2018;4(10):1352–8.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Morales JS, Valenzuela PL, Herrera-Olivares AM, et al. Exercise interventions and cardiovascular health in childhood cancer: a meta-analysis. Int J Sports Med. 2020;41(3):141–53.

    Article  PubMed  Google Scholar 

  117. Jones LW, Liu Q, Armstrong GT, et al. Exercise and risk of major cardiovascular events in adult survivors of childhood hodgkin lymphoma: a report from the childhood cancer survivor study. J Clin Oncol. 2014;32(32):3643–50.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hutchins KK, Siddeek H, Franco VI, Lipshultz SE. Prevention of cardiotoxicity among survivors of childhood cancer. Br J Clin Pharmacol. 2017;83(3):455–65.

    Article  PubMed  Google Scholar 

  119. Chen JJ, Wu PT, Middlekauff HR, Nguyen KL. Aerobic exercise in anthracycline-induced cardiotoxicity: a systematic review of current evidence and future directions. Am J Physiol Heart Circ Physiol. 2017;312(2):H213–22.

    Article  PubMed  Google Scholar 

  120. Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2362–71.

    Article  PubMed  Google Scholar 

  121. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.

    Article  PubMed  Google Scholar 

  122. Kirk R, Dipchand AI, Rosenthal DN, et al. The International Society for Heart and Lung Transplantation guidelines for the management of pediatric heart failure: executive summary. [corrected]. J Heart Lung Transplant. 2014;33(9):888–909.

    Article  PubMed  Google Scholar 

  123. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    Article  PubMed  Google Scholar 

  124. Martin-Garcia A, Lopez-Fernandez T, Mitroi C, et al. Effectiveness of sacubitril-valsartan in cancer patients with heart failure. ESC Heart Fail. 2020.

    Google Scholar 

  125. Kenney LB, Ames B, Margossian R, et al. Regional practice norms for the care of childhood cancer survivors at risk for cardiomyopathy: a Delphi study. Pediatr Blood Cancer. 2019;66(9):e27868.

    Article  PubMed  Google Scholar 

  126. Ryan TD, Border WL, Baker-Smith C, et al. The landscape of cardiovascular care in pediatric cancer patients and survivors: a survey by the ACC Pediatric Cardio-Oncology Work Group. Cardio-Oncology. 2019;5(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Halliday BP, Wassall R, Lota AS, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet. 2019;393(10166):61–73.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lipshultz SE, Lipsitz SR, Sallan SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(12):2629–36.

    Article  PubMed  Google Scholar 

  129. Bianco CM, Al-Kindi SG, Oliveira GH. Advanced heart failure therapies for cancer therapeutics-related cardiac dysfunction. Heart Fail Clin. 2017;13(2):327–36.

    Article  PubMed  Google Scholar 

  130. Arico M, Pedroni E, Nespoli L, Vigano M, Porta F, Burgio GR. Long term survival after heart transplantation for doxorubicin induced cardiomyopathy. Arch Dis Child. 1991;66(8):985–6.

    Article  PubMed  PubMed Central  Google Scholar 

  131. McManus RP, O’Hair DP. Pediatric heart transplantation for doxorubicin-induced cardiomyopathy. J Heart Lung Transplant. 1992;11(2 Pt 1):375–6.

    PubMed  Google Scholar 

  132. Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35(1):1–23.

    Article  PubMed  Google Scholar 

  133. Musci M, Loebe M, Grauhan O, et al. Heart transplantation for doxorubicin-induced congestive heart failure in children and adolescents. Transplant Proc. 1997;29(1–2):578–9.

    Article  PubMed  Google Scholar 

  134. Bock MJ, Pahl E, Rusconi PG, et al. Cancer recurrence and mortality after pediatric heart transplantation for anthracycline cardiomyopathy: a report from the pediatric heart transplant study (PHTS) group. Pediatr Transplant. 2017.

    Google Scholar 

  135. Ward KM, Binns H, Chin C, Webber SA, Canter CE, Pahl E. Pediatric heart transplantation for anthracycline cardiomyopathy: cancer recurrence is rare. J Heart Lung Transplant. 2004;23(9):1040–5.

    Article  PubMed  Google Scholar 

  136. Mangat JS, Rao K, Kingston J, Veys P, Amrolia P, Burch M. Early pediatric anthracycline cardiotoxicity: managed by serial heart and bone marrow transplantation. J Heart Lung Transplant. 2007;26(6):658–60.

    Article  PubMed  Google Scholar 

  137. Menon NM, Katsanis E, Khalpey Z, Whitlow P. Pediatric secondary chronic myeloid leukemia following cardiac transplantation for anthracycline-induced cardiomyopathy. Pediatr Blood Cancer. 2015;62(1):166–8.

    Article  PubMed  Google Scholar 

  138. Cavigelli-Brunner A, Schweiger M, Knirsch W, et al. VAD as bridge to recovery in anthracycline-induced cardiomyopathy and HHV6 myocarditis. Pediatrics. 2014;134(3):e894–9.

    Article  PubMed  Google Scholar 

  139. Sayin OA, Ozpeker C, Schoenbrodt M, et al. Ventricular assist devices in patients with chemotherapy-induced cardiomyopathy: new modalities. Acta Cardiol. 2015;70(4):430–4.

    Article  PubMed  Google Scholar 

  140. Appel JM, Sander K, Hansen PB, Moller JE, Krarup-Hansen A, Gustafsson F. Left ventricular assist device as bridge to recovery for anthracycline-induced terminal heart failure. Congest Heart Fail. 2012;18(5):291–4.

    Article  PubMed  Google Scholar 

  141. Thomas GR, McDonald MA, Day J, et al. A matched cohort study of patients with end-stage heart failure from anthracycline-induced cardiomyopathy requiring advanced cardiac support. Am J Cardiol. 2016;118(10):1539–44.

    Article  PubMed  Google Scholar 

  142. Oliveira GH, Dupont M, Naftel D, et al. Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2014;63(3):240–8.

    Article  PubMed  Google Scholar 

  143. Krasnopero D, Asante-Korang A, Jacobs JP, et al. Case report and review of the literature: the utilisation of a ventricular assist device as bridge to recovery for anthracycline-induced ventricular dysfunction. Cardiol Young. 2018;28(3):471–5.

    Article  PubMed  Google Scholar 

  144. Sieswerda E, Postma A, van Dalen EC, et al. The Dutch Childhood Oncology Group guideline for follow-up of asymptomatic cardiac dysfunction in childhood cancer survivors. Ann Oncol. 2012;23(8):2191–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Raskin, A., Ryan, T.D. (2023). Pediatric Cardio-Oncology. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_79-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_79-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics