Skip to main content
Log in

WYPiWYG Damage Mechanics for Soft Materials: A Data-Driven Approach

  • S.I.: Machine learning in computational mechanics
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The conservative elastic behavior of soft materials is characterized by a stored energy function which shape is usually specified a priori, except for some material parameters. There are hundreds of proposed stored energies in the literature for different materials. The stored energy function may change under loading due to damage effects, but it may be considered constant during unloading–reloading. The two dominant approaches in the literature to model this damage effect are based either on the Continuum Damage Mechanics framework or on the Pseudoelasticity framework. In both cases, additional assumed evolution functions, with their associated material parameters, are proposed. These proposals are semi-inverse, semi-analytical, model-driven and data-adjusted ones. We propose an alternative which may be considered a non-inverse, numerical, model-free, data-driven, approach. We call this approach WYPiWYG constitutive modeling. We do not assume global functions nor material parameters, but just solve numerically the differential equations of a set of tests that completely define the behavior of the solid under the given assumptions. In this work we extend the approach to model isotropic and anisotropic damage in soft materials. We obtain numerically the damage evolution from experimental tests. The theory can be used for both hard and soft materials, and the infinitesimal formulation is naturally recovered for infinitesimal strains. In fact, we motivate the formulation in a one-dimensional infinitesimal framework and we show that the concepts are immediately applicable to soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Treloar LRG (1975) The physics of rubber elasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Ogden RW (1997) Non-linear elastic deformations. Courier Corporation, New York

    Google Scholar 

  3. Bergstrom JS (2015) Mechanics of solid polymers: theory and computational modeling. Elsevier, Amsterdam

    Google Scholar 

  4. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  5. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  6. Holzapfel GA (2000) Nonlinear solid mechanics, vol 24, Wiley, Chichester

  7. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

  8. Ogden RW (1973) Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem Technol 46(2):398–416

    Article  Google Scholar 

  9. Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol Heart Circ Physiol 237(5):H620–H631

    Google Scholar 

  10. Itskov M, Ehret AE (2009) A universal model for the elastic, inelastic and active behaviour of soft biological tissues. GAMM-Mitteilungen 32(2):221–236

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehret AE, Itskov M (2009) Modeling of anisotropic softening phenomena: application to soft biological tissues. Int J Plast 25(5):901–919

    Article  MATH  Google Scholar 

  12. Itskov M, Aksel N (2004) A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int J Solids and Struct 41(14):3833–3848

    Article  MathSciNet  MATH  Google Scholar 

  13. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16(1):1–12

    Article  Google Scholar 

  14. Humphrey JD, Yin FC (1987) A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys J 52(4):563–570

    Article  Google Scholar 

  15. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1–3):1–48

    MathSciNet  MATH  Google Scholar 

  16. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  17. Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34(6):484–502

    Article  MATH  Google Scholar 

  18. Groves RB, Coulman SA, Birchall JC, Evans SL (2013) An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater 18:167–180

    Article  Google Scholar 

  19. Kvistedal YA, Nielsen PMF (2009) Estimating material parameters of human skin in vivo. Biomech Model Mechanobiol 8(1):1–8

    Article  Google Scholar 

  20. Latorre M, Montáns FJ (2015) Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur J Mech A Solids 53:99–106

    Article  MathSciNet  Google Scholar 

  21. Latorre M, Montáns FJ (2016) On the tension-compression switch of the Gasser–Ogden–Holzapfel model: analysis and a new pre-integrated proposal. J Mech Behav Biomed Mater 57:175–189

    Article  Google Scholar 

  22. Latorre M, Romero X, Montáns FJ (2016) The relevance of transverse deformation effects in modeling soft biological tissues. Int J Solids Struct 99:57–70

    Article  Google Scholar 

  23. Skacel P, Bursa J (2016) Poisson’s ratio of arterial wall-Inconsistency of constitutive models with experimental data. J Mech Behav Biomed Mater 54:316–327

    Article  Google Scholar 

  24. Latorre M, De Rosa E, Montáns FJ (2017) Understanding the need of the compression branch to characterize hyperelastic materials. Int J Non-Linear Mech 89:14–24

    Article  Google Scholar 

  25. Murphy JG (2013) Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur J Mech A Solids 42:90–96

    Article  MathSciNet  Google Scholar 

  26. Murphy JG (2014) Evolution of anisotropy in soft tissue. Proceedings of the Royal Society A (Vol 470, no. 2161, p 20130548)

  27. Mullins L (1948) Effect of stretching on the properties of rubber. Rubber Chem Technol 21(2):281–300

    Article  Google Scholar 

  28. Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42(1):339–362

    Article  Google Scholar 

  29. Blanchard AF, Parkinson D (1952) Breakage of carbon-rubber networks by applied stress. Ind Eng Chem 44(4):799–812

    Article  Google Scholar 

  30. Bueche F (1960) Molecular basis for the Mullins effect. J Appl Polym Sci 4(10):107–114

    Article  Google Scholar 

  31. Houwink R (1956) Slipping of molecules during the deformation of reinforced rubber. Rubber Chem Technol 29(3):888–893

    Article  Google Scholar 

  32. Hanson DE, Hawley M, Houlton R, Chitanvis K, Rae P, Orler EB, Wrobleski DA (2005) Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect. Polymer 46(24):10989–10995

    Article  Google Scholar 

  33. Kraus G, Childers CW, Rollmann KW (1966) Stress softening in carbon black reinforced vulcanizates. Strain rate and temperature effects. Rubber Chem Technol 39(5):1530–1543

    Article  Google Scholar 

  34. Lion A (1996) A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Continuum Mech Thermodyn 8(3):153–169

    Article  MathSciNet  Google Scholar 

  35. Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45(3):601–612

    Article  Google Scholar 

  36. Cribb AM, Scott JE (1995) Tendon response to tensile stress: an ultrastructural investigation of collagen: proteoglycan interactions in stressed tendon. J Anat 187(Pt 2):423

    Google Scholar 

  37. Scott JE (2003) Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage, etc. A sliding proteoglycan-filament model. J Physiol 553(2):335–343

    Article  Google Scholar 

  38. Tang Y, Ballarini R, Buehler MJ, Eppell SJ (2010) Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 7(46):839–850

    Article  Google Scholar 

  39. Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ (2010) In vitro fracture testing of submicron diameter collagen fibril specimens. Biophys J 99(6):1986–1995

    Article  Google Scholar 

  40. Szczesny SE, Elliott DM (2014) Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon. Acta Biomater 10(6):2582–2590

    Article  Google Scholar 

  41. Miñano M, Montáns FJ (2014) Engineering damage mechanics review. Civil Comp Press, Stirling

    Google Scholar 

  42. Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173

    Article  MATH  Google Scholar 

  43. Govindjee S, Simo J (1991) A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect. J Mech Phys Solids 39(1):87–112

    Article  MathSciNet  MATH  Google Scholar 

  44. Miehe C (1995) Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur J Mech A Solids 14(5):697–720

    MATH  Google Scholar 

  45. Calvo B, Peña E, Martínez MA, Doblaré M (2007) An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects. Int J Numer Meth Eng 69(10):2036–2057

    Article  MathSciNet  MATH  Google Scholar 

  46. Peña E (2014) Computational aspects of the numerical modelling of softening, damage and permanent set in soft biological tissues. Comput Struct 130:57–72

    Article  Google Scholar 

  47. Peña E (2011) A rate dependent directional damage model for fibred materials: application to soft biological tissues. Comput Mech 48(4):407–420

    Article  MathSciNet  MATH  Google Scholar 

  48. Peña E, Doblaré M (2009) An anisotropic pseudo-elastic approach for modelling Mullins effect in fibrous biological materials. Mech Res Commun 36(7):784–790

    Article  MATH  Google Scholar 

  49. Peña E, Peña JA, Doblaré M (2009) On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int J Solids Struct 46(7):1727–1735

    Article  MATH  Google Scholar 

  50. Balzani D, Schmidt T (2015) Comparative analysis of damage functions for soft tissues: properties at damage initialization. Math Mech Solids 20(4):480–492

    Article  MathSciNet  MATH  Google Scholar 

  51. Martins P, Peña E, Jorge RN, Santos A, Santos L, Mascarenhas T, Calvo B (2012) Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 8:111–122

    Article  Google Scholar 

  52. Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12(5):277–296

    Article  MathSciNet  MATH  Google Scholar 

  53. Comellas E, Bellomo FJ, Oller S (2016) A generalized finite-strain damage model for quasi-incompressible hyperelasticity using hybrid formulation. Int J Numer Methods Eng 105(10):781–800

    Article  MathSciNet  Google Scholar 

  54. Sáez P, Alastrué V, Peña E, Doblaré M, Martínez MA (2012) Anisotropic microsphere-based approach to damage in soft fibered tissue. Biomechan Model Mechanobiol 11(5):595–608

    Article  Google Scholar 

  55. Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials–Part I: the non-affine micro-sphere model of rubber elasticity. J Mechan Phys Solids 52(11):2617–2660

    Article  MATH  Google Scholar 

  56. Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part II: the micro-sphere model of finite rubber viscoelasticity. J Mechan Phys Solids 53(10):2231–2258

    Article  MATH  Google Scholar 

  57. Göktepe S, Miehe C (2005) A micro-macro approach to rubber-like materials. Part III: the micro-sphere model of anisotropic Mullins-type damage. J Mech Phys Solids 53(10):2259–2283

    Article  MathSciNet  MATH  Google Scholar 

  58. Caner FC, Carol I (2006) Microplane constitutive model and computational framework for blood vessel tissue. J Biomechan Eng 128(3):419–427

    Article  Google Scholar 

  59. Alastrué V, Sáez P, Martínez MA, Doblaré M (2010) On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mechan Res Commun 37(8):700–706

    Article  MATH  Google Scholar 

  60. Famaey N, Vander Sloten J, Kuhl E (2013) A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomechan Model Mechanobiol 12(1):123–136

    Article  Google Scholar 

  61. Balzani D, Neff P, Schröder J, Holzapfel GA (2006) A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int J Solids Struct 43(20):6052–6070

    Article  MathSciNet  MATH  Google Scholar 

  62. Volokh KY (2008) Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening. J Biomechan 41(2):447–453

    Article  Google Scholar 

  63. Volokh KY (2011) Modeling failure of soft anisotropic materials with application to arteries. J Mechan Behav Biomed Mater 4(8):1582–1594

    Article  Google Scholar 

  64. Rebouah M, Chagnon G (2014) Permanent set and stress-softening constitutive equation applied to rubber-like materials and soft tissues. Acta Mechan 225(6):1685–1698

    Article  MathSciNet  MATH  Google Scholar 

  65. Schmidt T, Balzani D, Holzapfel GA (2014) Statistical approach for a continuum description of damage evolution in soft collagenous tissues. Comput Methods Appl Mechan Eng 278:41–61

    Article  MathSciNet  Google Scholar 

  66. Blanco S, Polindara CA, Goicolea JM (2015) A regularised continuum damage model based on the mesoscopic scale for soft tissue. Int J Solids Struct 58:20–33

    Article  Google Scholar 

  67. Balzani D, Ortiz M (2012) Relaxed incremental variational formulation for damage at large strains with application to fiber-reinforced materials and materials with truss-like microstructures. Int J Numer Methods Eng 92(6):551–570

    Article  MathSciNet  MATH  Google Scholar 

  68. Schmidt T, Balzani D (2015) Relaxed incremental variational approach for the modeling of damage-induced stress hysteresis in arterial walls. J Mechan Behav Biomed Mater 58:149–162

    Article  Google Scholar 

  69. Ogden RW, Roxburgh DG (1999) A pseudo–elastic model for the Mullins effect in filled rubber. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (vol 455, No. 1988, pp. 2861-2877)

  70. Dorfmann A, Ogden RW (2003) A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int J Solids Struct 40(11):2699–2714

    Article  MATH  Google Scholar 

  71. Dorfmann A, Ogden RW (2004) A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int J Solids Struct 41(7):1855–1878

    Article  MATH  Google Scholar 

  72. Dorfmann A, Pancheri FQ (2012) A constitutive model for the Mullins effect with changes in material symmetry. Int J Non-Linear Mech 47(8):874–887

    Article  Google Scholar 

  73. Dorfmann A, Trimmer BA, Woods WA (2007) A constitutive model for muscle properties in a soft-bodied arthropod. J R Soc Interface 4(13):257–269

    Article  Google Scholar 

  74. Naumann C, Ihlemann J (2015) On the thermodynamics of pseudo-elastic material models which reproduce the Mullins effect. Int J Solids Struct 69:360–369

    Article  Google Scholar 

  75. Gracia LA, Peña E, Royo JM, Pelegay JL, Calvo B (2009) A comparison between pseudo-elastic and damage models for modelling the Mullins effect in industrial rubber components. Mechan Res Commun 36(7):769–776

    Article  MATH  Google Scholar 

  76. Twizell EH, Ogden RW (1983) Non-linear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. The Journal of the Australian Mathematical Society. Series B. Appl Math 24(04):424–434

    MATH  Google Scholar 

  77. Latorre M, Montáns FJ (2014) What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput Mech 53(6):1279–1298

    Article  MathSciNet  MATH  Google Scholar 

  78. Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun Numer Methods Eng 25(1):53–63

    Article  MathSciNet  MATH  Google Scholar 

  79. Latorre M, Montáns FJ (2013) Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput Struct 122:13–26

    Article  Google Scholar 

  80. Crespo J, Latorre M, Montáns FJ (2017) WYPIWYG hyperelasticity for isotropic, compressible materials. Comput Mechan 59:73–93

    Article  MathSciNet  Google Scholar 

  81. Latorre M, Montáns FJ (2017) WYPiWYG hyperelasticity without inversion formula: application to passive ventricular myocardium. Comput Struct 185:47–58

    Article  Google Scholar 

  82. Latorre M, Peña E, Montáns FJ (2017) Determination and finite element validation of the WYPIWYG strain energy of superficial fascia from experimental data. Ann Biomed Eng 45(3):799–810

    Article  Google Scholar 

  83. Romero X, Latorre M, Montáns FJ (2017) Determination of the WYPiWYG strain energy density of skin through finite element analysis of the experiments on circular specimens. Finite Elem Anal Des 134:1–15

    Article  Google Scholar 

  84. Latorre M, Montáns FJ (2016) Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains. Comput Struct 163:56–70

    Article  Google Scholar 

  85. Latorre M, Montáns FJ (2015) Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Comput Mechan 56(3):503–531

    Article  MathSciNet  MATH  Google Scholar 

  86. Miñano M, Montáns FJ (2015) A new approach to modeling isotropic damage for Mullins effect in hyperelastic materials. Int J Solids Struct 67:272–282

    Article  Google Scholar 

  87. Latorre M, Montáns FJ (2014) What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput Mechan 53(6):1279–1298

    Article  MathSciNet  MATH  Google Scholar 

  88. Bathe KJ (2014) Finite element procedures, 2nd edn. Watertown, KJ Bathe

    MATH  Google Scholar 

  89. Rausch MK, Humphrey JD (2015) A microstructurally inspired damage model for early venous thrombus. J Mechan Behav Biomed Mater 55:12–20

    Article  Google Scholar 

  90. Gurtin ME, Francis EC (1981) Simple rate-independent model for damage. J Spacecraft Rockets 18(3):285–286

    Article  Google Scholar 

  91. Neff P, Eidel B, Martin RJ (2016) Geometry of logarithmic strain measures in solid mechanics. Arch Ration Mechan Anal 222(2):507–572

    Article  MathSciNet  MATH  Google Scholar 

  92. Fiala Z (2016) Geometry of finite deformations and time-incremental analysis. Int J Non-Linear Mechan 81:230–244

    Article  Google Scholar 

  93. Kearsley EA, Zapas LJ (1980) Some methods of measurement of an elastic strain-energy function of the Valanis–Landel type. J Rheol 24(4):483–500

    Article  Google Scholar 

  94. Latorre M, Montáns FJ (2016) Stress and strain mapping tensors and general work-conjugacy in large strain continuum mechanics. Appl Math Model 40(5):3938–3950

    Article  MathSciNet  Google Scholar 

  95. Hayhurst D, Leckie FA (1973) The effect of creep constitutive and damage relationships upon the rupture time of a solid circular torsion bar. J Mechan Phys Solids 21(6):431–432

    Article  Google Scholar 

  96. Murakami S, Ohno N (1981) A continuum theory of creep and creep damage. In Creep in structures, Springer, Heidelberg, pp 422–444

  97. Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mechan Mater 4(1):67–93

    Article  Google Scholar 

  98. Simo JC, Ju JW (1987) Strain- and stress-based continuum damage models-I. Formulation. Int J Solids Struct 23(7):821–840

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Partial financial support for this work has been given by grant DPI2015-69801-R from the Dirección General de Proyectos de Investigación of the Ministerio de Economía y Competitividad of Spain. FJM acknowledges the support of the Department of Mechanical and Aerospace Engineering of University of Florida during the sabbatical period in which part of this work was done, and Ministerio de Educación, Cultura y Deporte of Spain for the financial support for that stay under Grant PRX15/00065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Montáns.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miñano, M., Montáns, F.J. WYPiWYG Damage Mechanics for Soft Materials: A Data-Driven Approach. Arch Computat Methods Eng 25, 165–193 (2018). https://doi.org/10.1007/s11831-017-9233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9233-4

Navigation