Skip to main content
Log in

A functional response evaluation of pre-infestation with Bemisia tabaci cryptic species MEAM1 on predation by Propylea japonica of Myzus persicae on host plant tomatoes

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Herbivore feeding on host plants may induce defense responses of the plant which influence other herbivores and interacting species in the vicinity, such as natural enemies. The present work evaluated the impact of pre-infestation with the tobacco whitefly Bemisia tabaci cryptic species MEAM 1, on the predation ability of the ladybird Propylea japonica, to the green peach aphid Myzus persicae, on tomato plants. The results show that B. tabaci pre-infestation density, duration, and leaf position, can impact prey consumed by P. japonica under various aphid densities. The aphids consumed by P. japonica in each treatment were fit using the Holling type II functional response equation. The predatory efficiency (a/T h) of P. japonica was the highest in the treatment with 60 aphids and 48-h infestation directly on damaged leaves. The predatory efficiencies of P. japonica decreased with a reduction of pre-infestation density and duration. We also observed that pre-infestation on young and undamaged leaves increased predation by P. japonica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agelopoulos N, Keller M (1994) Plant-natural enemy association in the tritrophic system Cotesia rubecula-Pieris rapae-Brassicaceae (Cruciferae): II. Preference of C. rubecula for landing and searching. J Chem Ecol 20:1735–1748

    Article  CAS  PubMed  Google Scholar 

  • Allen P, Bennett K (2010) PASW statistics by SPSS: a practical guide, version 18.0. Cengage Learning, South Melbourne

    Google Scholar 

  • Altieri M (1999) The ecological role of biodiversity in agro ecosystems. Agr Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • Ament K, Kant M, Sabelis M, Haring M, Schuurink R (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin I (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. PNAS 95:8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezemer T, van Dam N (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    Article  PubMed  Google Scholar 

  • Bonsall M, Hassell M (1997) Apparent competition structures ecological assemblages. Nature 388:371–373

    Article  CAS  Google Scholar 

  • Byrne D, Bellows T Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457

    Article  Google Scholar 

  • Chu D, Zhang Y, Cong B, Xu B, Wu Q (2004) The invasive mechanism of a worldwide important pest, Bemisia tabaci (Gennadius) biotype B. Acta Ento Sini 47:400–406 (in Chinese)

    Google Scholar 

  • Cohen J, Jonsson T, Carpenter S (2003) Ecological community description using the food web, species abundance, and body size. PNAS 100:1781–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  PubMed  Google Scholar 

  • De Clercq P, Mohaghegh J, Tirry L (2000) Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Bio Control 18(1):65–70

    Article  Google Scholar 

  • Denno R, Peterson M, Gratton C, Cheng J, Langellotto G, Huberty A, Finke D (2000) Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology 81(7):1814–1827

    Article  Google Scholar 

  • Dicke M, Baldwin I (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, Bruin J (2001) Chemical information transfer between wounded and unwounded plants: backing up future. Biochem Syst Ecol 29(10):1103–1113

    Article  Google Scholar 

  • Dicke M, van Poecke R (2002) Signaling in plant-insect interactions: signal transduction in direct and indirect plant defence. In: Scheel D, Wasternack C (eds) Plant signal transduction. Oxford University Press, Oxford

    Google Scholar 

  • Emden H, Eastop V, Hughes R, Way M (1969) The ecology of Myzus persicae. Annu Rev Ento 14:197–270

    Article  Google Scholar 

  • Fernández-arhex V, Corley JC (2003) The functional response of parasitoids and its implications for biological control. Biocontrol Sci Tech 13(4):403–413

    Article  Google Scholar 

  • Frank S (2010) Biological control of arthropod pests using banker plant systems: past progress and future directions. Biol Control 52:8–16

    Article  Google Scholar 

  • Gazori F, Hesaaraki M (2015) Mathematical analysis of a within-host model of malaria with immune effectors and Holling type II functional response. Appl Math 42(2–3):137–158

    Google Scholar 

  • Gencer N, Kumral N, Sivritepe H, Seidi M, Susurluk H, Senturk B (2009) Olfactory response of the ladybird beetle Stethorus gilvifrons to two preys and herbivore-induced plant volatiles. Phytoparasitica 37:217–224

    Article  Google Scholar 

  • Gurr G, Kvedaras OL (2010) Synergizing biological control: scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Bio Control 52(3):198–207

    Article  Google Scholar 

  • Hanselman D, Littlefield BC (1997) Mastering MATLAB 5: a comprehensive tutorial and reference. Prentice Hall PTR, Upper saddle river

    Google Scholar 

  • Hassell M, Southwood T (1978) Foraging strategies of insects. Annu Rev Ecol S 9:75–98

    Article  Google Scholar 

  • Hodek I, Honek A (1996) Ecology of coccinellidae. Kluwer Academic Publishers, Netherland

    Book  Google Scholar 

  • Hodek I, Honek A, van Emden H (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Memo Entomol Soc Can 97(S45):5–60

    Article  Google Scholar 

  • Holling CS (1966) The functional response of invertebrate predators to prey density. Memo Entomol Soc Can 98(S48):5–86

    Article  Google Scholar 

  • Howe G, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Enkegaard A, Osborne L, Ramakers P, Messelink G, Pijnakker J, Murphy G (2011) The banker plant method in biological control. Crit Rev Plant Sci 30:259–278

    Article  Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Ento 53:431–448

    Article  CAS  Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Ento 43:243–270

    Article  CAS  Google Scholar 

  • Kost C, Heil M (2006) Herbivore—induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94(3):619–628

    Article  CAS  Google Scholar 

  • Lin KJ, Wu KM, Liu SB, Zhang YJ, Guo YY (2006) Functional responses of Chrysopa sinica, Propylaea japonica and Leis axyridis to Bemisia tabaci. Chin Bull Ento 43:339–343

    Google Scholar 

  • Liu TX, Stansly P (2002) Functional response and plant preference of Nephaspis oculatus (Coleoptera: Coccinellida), preying on Bemisia argentifolii (Homoptera: Aleyrodidae) in the laboratory. Entomol Sini 9:1–10

    CAS  Google Scholar 

  • Mandour N, El-Basha N, Liu TX (2006) Functional response of the ladybird, Cydonia vicina nilotica to cowpea aphid, Aphis craccivora in the laboratory. Insect Sci 13:49–54

    Article  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux J, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mauricio R (2000) Natural selection and the joint evolution of tolerance and resistance as plant defenses. Evol Ecol 14:491–507

    Article  Google Scholar 

  • Mohaghegh J, De Clercq P, Tirry L (2001) Functional response of the predators Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hubner) (Lep., Noctuidae): effect of temperature. J Appl Entomol 125(3):131–134

    Article  Google Scholar 

  • Pianka E, May R (1981) Competition and niche theory. Theor Ecol 7:167–196

    Google Scholar 

  • Price P (1986) Ecological aspects of host plant resistance and biological control: interactions among three tropical levels. In: Boethel D, Eikenbary R (eds) Interactions of plant resistance and parasitoids and predators of insects. Ellis Horwood, Chichester

    Google Scholar 

  • Rogers D (1972) Random search and insect population models. J Anim Eco 41:369–383

    Article  Google Scholar 

  • Sabelis M, Janssen A, Kant M (2001) The enemy of my enemy is my ally. Science 291:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller A, Howe G (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  CAS  PubMed  Google Scholar 

  • Stratmann J (2003) Long distance run in the wound response—jasmonic acid is pulling ahead. Trends Plant Sci 8:247–250

    Article  CAS  PubMed  Google Scholar 

  • Tan XL, Liu TX (2014) Aphid-induced plant volatiles affect the attractiveness of tomato plants to Bemisia tabaci and associated natural enemies. Entomol Exp Appl 151:259–269

    Article  Google Scholar 

  • Tan XL, Ridsdill-Smith J, Liu TX (2014) Direct and Indirect Impacts of Infestation of tomato plant by Myzus persicae (Hemiptera: Aphididae) on Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 9:e94310. doi:10.1371/journal.pone.0094310

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan XL, Hu NN, Zhang F, Ramirez-Romero R, Desneux N, Wang S, Ge F (2016) Mixed release of two parasitoids and a polyphagous ladybird predator to suppress the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Sci Rep 6:28245. doi:10.1038/srep28245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varley GC, Gradwell GR, Hassell MHP (1974) Insect population ecology: an analytical approach. University of California, Princeton

    Google Scholar 

  • Vet L, Dicke M (1992) Ecology of info chemical use by natural enemies in a tritrophic context. Annu Rev Ento 37:141–172

    Article  Google Scholar 

  • Xue M, Wang C, Bi M, Li Q, Liu TX (2010) Induced defense by Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in tobacco against Myzus persicae (Hemiptera: Aphididae). Environ Ento 39:883–891

    Article  Google Scholar 

Download references

Acknowledgement

Support of this research was from the following Grants: the National Natural Science Foundation of China (NO. 31272089), National Basic Research Program of China (973 Project No. 2013CB127600), Beijing Technology Program (D171100001617003) and Youth Science Foundation, Beijing Academy of Agriculture and Forestry Sciences (No. qnjj201410). We are grateful for the assistance of all staff and students in the Key Laboratory of Applied Entomology, Northwest A&F University at Yangling, Shaanxi, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tu-Yong Yi.

Additional information

Handling Editor: Yulin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Tan, XL., Liu, FH. et al. A functional response evaluation of pre-infestation with Bemisia tabaci cryptic species MEAM1 on predation by Propylea japonica of Myzus persicae on host plant tomatoes. Arthropod-Plant Interactions 11, 825–832 (2017). https://doi.org/10.1007/s11829-017-9537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-017-9537-1

Keywords

Navigation