Skip to main content
Log in

Effect of host plants on predation, prey preference and switching behaviour of Orius albidipennis on Bemisia tabaci and Tetranychus turkestani

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The anthocorid bug Orius albidipennis Reuter is a generalist predator that feeds on the whitefy Bemisia tabaci Gennadius and the strawberry spider mite Tetranychus turkestani Ugarov & Nikolski in greenhouse crops. There are no previous studies on the potential effcacy of the predatory bug against these pests on greenhouse crops. We report on the effcacy and the prey preference of the predator to control these pests on different host plants under laboratory conditions. In a laboratory experiment, we estimated the predation rates of O. albidipennis at different densities of each prey after 24 h on cucumber and sweet pepper leaves. Predation rates of the predatory bug to T. turkestani and B. tabaci were signifcantly higher on sweet pepper leaf than on cucumber leaf. We studied the effect of plant species on prey preference and switching of O. albidipennis to B. tabaci and T. turkestani using Manly’s α index values and Murdoch’s no-switch line, respectively. Our results show that O. albidipennis prefers T. turkestani to B. tabaci on both host plants but its preference for T. turkestani on sweet pepper is signifcantly greater than on cucumber. Moreover, on sweet pepper, preference values are completely ftted by Murdoch’s no-switch line. The fndings suggest that morphological defence traits of plants, such as hairy leaves of cucumber, may effectively change prey preference and reduce predation success of O. albidipennis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbot W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265–268.

    Article  Google Scholar 

  • Akramovskaya E. G. (1978) The biology of some predatory bugs of the family Anthocoridae in the conditions of the Ararat valley in Armenia. Biologicheskii Zhurnal Armenii 31, 959–964.

    Google Scholar 

  • Ashley J. L. (2003) Toxicity of selected acaricides on Tetranychus urticae Koch (Tetranychidae: Acari) and Orius insidiosus Say (Hemiptera: Anthocoridae) life stages and predation studies with Orius insidiosus. MSc Thesis. Virginia Polytechnic Institute and State University, Virginia, USA. 54 pp.

    Google Scholar 

  • Breene R. G., Meagher Jnr R. L., Nordlund D. A. and Wang Y.-T. (1992) Biological control of Bemisia tabaci (Homoptera: Aleyrodidae) in a greenhouse using Chrysoperla ruflabris (Neuroptera: Chrysopidae). Biological Control 2, 9–14.

    Article  Google Scholar 

  • Cheng L. L., Nechols J. R., Margolies D. C., Campbell J. F. and Yang P. S. (2010) Assessment of prey preference by the mass-produced generalist predator, Mallada basalis (Walker) (Neuroptera: Chrysopidae), when offered two species of spider mites, Tetranychus kanzawai Kishida and Panonychus citri (McGregor) (Acari: Tetranychidae), on papaya. Biological Control 53, 267–272.

    Article  Google Scholar 

  • Chesson P. L. (1984) Variable predators and switching behavior. Theoretical Population Biology 26, 1–26.

    Article  Google Scholar 

  • Chow A., Chau A. and Heinz K. M. (2008) Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse roses. Biological Control 44, 259–270.

    Article  Google Scholar 

  • Dehghani Zahedani M., Sarafrazi A., Ostovan H. and Mardi M. (2011) Population variation of predatory bug Orius albidipennis (Het: Anthocoridae) in different regions of Iran. Journal of Food, Agriculture and Environment 9, 469–473.

    Google Scholar 

  • Dicke M., Sabelis W. M. and van den Berg H. (1989) Does prey preference change as a result of prey species being presented together?: Analysis of prey selection by the predatory mite Typhlodromalus pyri (Acarina: Phytoseiidae). Oecologia 81, 302–309.

    Article  Google Scholar 

  • Eubanks M. D. and Denno R. F. (1999) The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology 80, 1253–1266.

    Article  Google Scholar 

  • Evans E. D. (2008) The role of predator-prey size ratio in determining the effciency of capture by Anthocoris nemorum and the escape reactions of its prey Acyrthosiphon pisum. Ecological Entomology 1, 85–90.

    Article  Google Scholar 

  • Hassell M. P. (1978) The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press, New Jersey, pp. 11–23.

    Google Scholar 

  • Hossini M., Ashouri A., Enkegaard A., Weisser W. W., Goldansaz S. H., Mahalati M. N. and Sarraf Moayeri H. R. (2010) Plant quality effects on intraguild predation between Orius laevigatus and Aphidoletes aphidimyza. Entomologia Experimentalis et Applicata 135, 208–216.

    Article  Google Scholar 

  • Jaworski C. C., Bompard A., Genies L., Amiens-Desneux E. and Desneux N. (2013) Preference and prey switching in generalist predator attacking local and invasive alien pests. PLoS One 8(12), e82231. doi: 10.1371/journal.pone.0082231.

    Article  Google Scholar 

  • Jeppson L. R., Keifer H. H. and Baker E. W. (1975) Mites Injurious to Economic Plants. University of California Press, Riverside, USA. 614 pp.

    Google Scholar 

  • Kamali K., Ostovan H. and Atamehr A. (2004) A Catalog of Mites and Ticks (Acari) of Iran. Islamic Azad University Scientifc Publication Centre, Tehran, Iran, pp. 43–52.

    Google Scholar 

  • Klečka K. (2010) Predation by aquatic insects: species traits and habitat structure mediate predator–prey interactions. MSc thesis, in English. University of South Bohemia, Ceské Budečjovice, Czech Republic. 30 pp.

    Google Scholar 

  • Kousari A. A. and Kharazi-Pakdel A. (2006) Preypreference of Orius albidipennis (Het.: Anthocoridae) on onion thrips and two-spotted spider mite under laboratory conditions. Journal of Entomological Society of Iran 26, 73–91.

    Google Scholar 

  • Krebs C. J., (1989) Ecological methodology. Harper Collins, New York, pp. 321–372.

    Google Scholar 

  • Krips O. E., Kleijn P. W., Willems P. E. L., Gols G. J. Z. and Dicke M. (1999) Leaf hairs infuence searching effciency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental & Applied Acarology 23, 119–131.

    Article  Google Scholar 

  • Lattin J. D. (1999) Bionomics of the Anthocoridae. Annual Review of Entomology 44, 207–231.

    Article  CAS  Google Scholar 

  • Madadi H., Enkegaard A., Brødsgaard H. F., Kharrazi-Pakdel A., Ashouri A. and Mohaghegh-Neishabouri J. (2009) Interactions between Orius albidipennis (Heteroptera: Anthocoridae) and Neoseiulus cucumeris (Acari: Phytoseiidae): Effects of host plants under microcosm condition. Biological Control 50, 137–142.

    Article  Google Scholar 

  • Manly B. (1974) A model for certain types of selection experiments. Biometrics 30, 281–294. doi:10.2307/2529649.

    Article  Google Scholar 

  • Montserrat M., Albajes R. and Castañé C. (2000) Functional response of four heteropteran predators preying on greenhouse whitefy (Homoptera: Aleyrodidae) and western fower thrips (Thysanoptera: Thripidae). Environmental Entomology 29, 1075–1082.

    Article  Google Scholar 

  • Mossadegh M. S. and Kocheili F. (2003) A Semi Descriptive Checklist of Identifed Species of Arthropods (Agricultural, Medical, etc.) and Other Pests from Khuzestan, Iran. Shahid Chamran University Press, Ahvaz, Iran. 475 pp.

    Google Scholar 

  • Murdoch W. W. (1969) Switching in general predators: Experiments on predator specifcity and stability of prey populations. Ecological Monographs 39, 335–354.

    Article  Google Scholar 

  • Murdoch W. W. and Marks J. R. (1973) Predation by coccinellid beetles: Experiments on switching. Ecology 54, 160–167.

    Article  Google Scholar 

  • Nordlund D. A. and Morrison R. K. (1990) Handling time, prey preference, and functional response for Chrysoperla ruflabris in the laboratory. Entomologia Experimentalis et Applicata 57, 237–242.

    Article  Google Scholar 

  • Oaten A. and Murdoch W. W. (1975) Switching, functional response, and stability in predator–prey systems. The American Naturalist 109, 299–318.

    Article  Google Scholar 

  • Pericart J. (1972) Hémiptères, Anthocoridae, Cimicidae et Microphysidae de L’Ouest–Paléarctique. Faune Eur Bassin Méditerranéen 7, 398–402.

    Google Scholar 

  • Price P. W., Bouton C. E., Gross P., McPheron B. A., Thompson J. N. and Weis A. E. (1980) Interaction among three trophic levels: infuence of plants on interactions between insect herbivores and natural enemies. Annual Review of Entomology 11, 41–65.

    Article  Google Scholar 

  • Price P. W., Denno R. F., Eubanks M. D., Finke D. L. and Kaplan I. (2011) Insect Ecology, Behavior, Populations and Communities. Cambridge University Press, UK. 578 pp.

    Book  Google Scholar 

  • Reynolds P. (2011) The effects of plant gross morphology on the foraging effciencies of the generalist predators. MSc Thesis. Universityof Waterloo, Waterloo, Ontario, Canada. 80 pp.

    Google Scholar 

  • Reynolds P. G. and Cuddington K. (2012) Effects of plant gross morphology on predator searching behaviour. Environmental Entomology 41, 516–522. doi: 10.1603/EN11179.

    Article  Google Scholar 

  • Sobhy I.S., Sarhan A.A., Shoukry A.A. El-Kady G. A., Mandour N. S. and Reitz S. R. (2010) Development, consumption rates and reproductive biology of Orius albidipennis reared on various prey. BioControl 55, 753–765.

    Article  Google Scholar 

  • SPSS (2007) SPSS Inc. Released 2007. SPSS for Windows, Version 16.0. SPSS Inc., Chicago.

    Google Scholar 

  • Stansly P. A. and Natwick E. T. (2010) Integrated systems for managing Bemisia tabaci in protected and open feld agriculture, pp. 467–497. In Bemisia: Bionomics and Management of a Global Pest (edited by P. A. Stansly and S.E. Naranjo). Springer, Netherlands.

    Chapter  Google Scholar 

  • Tommasini M. G. and Nicoli G. (1996) Evaluation of Orius spp. as biological control agents of thrips pests: Further experiments on the existence of diapause in Orius laevigatus. IOBC/WPRS Bulletin 19, 183–186.

    Google Scholar 

  • Tschnaz B., Bersier L. F. and Basher S. (2007) Functional response: a question of alternative prey and predator density. Ecology 88, 1300–1308.

    Article  Google Scholar 

  • van Baalen M., Krivan V., van Rijin P. C. J. and Sabelis M. W. (2001) Alternative food, switching predators, and the presistance of predator-prey systems. American Naturalist 157, 512–524.

    PubMed  Google Scholar 

  • Yasunaga T. (1997) The fower bug genus Orius Wolff (Heteroptera: Anthocoridae) from Japan and Taiwan, Part II. Applied Entomology and Zoology 32, 379–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Yarahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banihashemi, A.S., Seraj, A.A., Yarahmadi, F. et al. Effect of host plants on predation, prey preference and switching behaviour of Orius albidipennis on Bemisia tabaci and Tetranychus turkestani. Int J Trop Insect Sci 37, 176–182 (2017). https://doi.org/10.1017/S1742758416000229

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758416000229

Key words

Navigation