Skip to main content
Log in

Antioxidant response of ridgetail white prawn Exopalaemon carinicauda to harmful dinoflagellate Prorocentrum minimum exposure and its histological change

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The dinoflagellate Prorocentrum minimum, one of the most widespread red tide causing species, affects marine aquaculture and ecosystems worldwide. In this study, ridgetail white prawn Exopalaemon carinicauda were exposed to P. minimum cells (5 × 104 cells mL−1) to investigate its harmful effects on the shrimp. Antioxidant activities and histological changes were used as indicators of health status of the shrimp. In 72 hours, the mortality of E. carinicauda was not affected, but its antioxidant response and histology were statistically different from those of control. Elevated superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities and depressed catalase (CAT) activity were observed in gill; while increased SOD, glutathione S-transferase (GST), CAT activities and modulated GPX activity were observed in hepatopancreas. Thus, antioxidant activities in gill and hepatopancreas seem to respond differentially to harmful alga exposure. Increased malondialdehyde (MDA) content in early a few hours indicates the damage of the antioxidant defense system. Although MDA content recovered to a low level thereafter, a series of histological abnormalities including accumulation or infiltration of hemocytes, tissue lesions and necrosis were discovered in gill and hepatopancreas. Exposure to P. minimum induced sublethal effects on E. carinicauda, including temporary oxidative damage and histological injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso-Rodríguez, R., and Páez-Osuna, F., 2003. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: A review with special reference to the situation in the Gulf of California. Aquaculture, 219 (1-4): 317–336.

    Article  Google Scholar 

  • Azanza, R. V., Fukuyo, Y., Yap, L. G., and Takayama, H., 2005. Prorocentrum minimum bloom and its possible link to a massive fish kill in Bolinao, Pangasinan, Northern Philippines. Harmful Algae, 4 (3): 519–524.

    Article  Google Scholar 

  • Bhavan, P. S., and Geraldine, P., 2000. Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan. Aquatic Toxicology, 50 (4): 331–339.

    Article  Google Scholar 

  • Boudet, L. N. C., Polizzi, P., Romero, M. B., Robles, A., Marcovecchio, J. E., and Gerpe, M. S., 2015. Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium in white shrimp, Palaemonetes argentinus. Ecotoxicology and Environmental Safety, 113: 231–240.

    Article  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248–254.

    Article  Google Scholar 

  • Cazenave, J., Bistoni, M. D. L. A., Pesce, S. F., and Wunderlin, D. A., 2006. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquatic Toxicology, 76 (1): 1–12.

    Article  Google Scholar 

  • Chang, C. C., Lee, P. P., Hsu, J. P., Yeh, S. P., and Cheng, W., 2006. Survival, and biochemical, physiological, and histopathological responses of the giant freshwater prawn, Macrobrachium rosenbergii, to short-term trichlorfon exposure. Aquaculture, 253 (1–4): 653–666.

    Article  Google Scholar 

  • Cuevas, N., Zorita, I., Costa, P. M., Franco, J., and Larreta, J., 2015. Development of histopathological indices in the digestive gland and gonad of mussels: Integration with contamination levels and effects of confounding factors. Aquatic Toxicology, 162: 152–164.

    Article  Google Scholar 

  • El-Beltagi, H. S., and Mohamed, H. I., 2013. Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41 (1): 44–57.

    Google Scholar 

  • Ghate, H., and Mulherkar, L., 1979. Histological changes in the gills of two freshwater prawn species exposed to copper sulphate [India]. Short communication. Indian Journal of Experimental Biology, 17 (8): 838–840.

    Google Scholar 

  • Gonçalves-Soares, D., Zanette, J., Yunes, J. S., Yepiz-Plascencia, G. M., and Bainy, A. C. D., 2012. Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Marine Environmental Research, 75: 54–61.

    Article  Google Scholar 

  • Goth, L., 1991. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196 (2-3): 143–151.

    Article  Google Scholar 

  • Goto, S., Kawakatsu, M., Izumi, S., Urata, Y., Kageyama, K., Ihara, Y., Koji, T., and Kondo, T., 2009. Glutathione Stransferase Ï€ localizes in mitochondria and protects against oxidative stress. Free Radical Biology and Medicine, 46 (10): 1392–1403.

    Article  Google Scholar 

  • Habig, W. H., Pabst, M. J., and Jakoby, W. B., 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249 (22): 7130–7139.

    Google Scholar 

  • Heil, C. A., Glibert, P. M., and Fan, C., 2005. Prorocentrum minimum (Pavillard) Schiller: A review of a harmful algal bloom species of growing worldwide importance. Harmful Algae, 4 (3): 449–470.

    Article  Google Scholar 

  • Huang, X., Chen, L., Liu, W. J., Qiao, Q., Wu, K., Wen, J., Huang, C. H., Tang, R., and Zhang, X. Z., 2015. Involvement of oxidative stress and cytoskeletal disruption in microcystin-induced apoptosis in CIK cells. Aquatic Toxicology, 165: 41–50.

    Article  Google Scholar 

  • Jia, R., Cao, L. P., Du, J. L., Wang, J. H., Liu, Y. J., Jeney, G., Xu, P., and Yin, G. J., 2014. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio). Aquatic Toxicology, 152: 11–19.

    Article  Google Scholar 

  • Jos, A., Pichardo, S., Prieto, A. I., Repetto, G., Vázquez, C. M., Moreno, I., and Cameán, A. M., 2005. Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquatic Toxicology, 72 (3): 261–271.

    Article  Google Scholar 

  • Karthikeyan, V., Selvakumar, P., and Gopalakrishnan, A., 2015. A novel report of fungal pathogen Aspergillus awamori causing black gill infection on Litopenaeus vannamei (pacific white shrimp). Aquaculture, 444: 36–40.

    Article  Google Scholar 

  • Kim, D., Nakashima, T., Matsuyama, Y., Niwano, Y., Yamaguchi, K., and Oda, T., 2007. Presence of the distinct systems responsible for superoxide anion and hydrogen peroxide generation in red tide phytoplankton Chattonella marina and Chattonella ovata. Journal of Plankton Research, 29 (3): 241–247.

    Article  Google Scholar 

  • Landsberg, J. H., 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10 (2): 113–390.

    Article  Google Scholar 

  • Li, N., Hou, Y. H., Ma, D. D., Jing, W. X., Dahms, H. U., and Wang, L., 2015. Lead accumulation, oxidative damage and histopathological alteration in testes and accessory glands of freshwater crab, Sinopotamon henanense, induced by acute lead exposure. Ecotoxicology and Environmental Safety, 117: 20–27.

    Article  Google Scholar 

  • Li, N., Zhao, Y. L., and Yang, J., 2007. Impact of waterborne copper on the structure of gills and hepatopancreas and its impact on the content of metallothionein in juvenile giant freshwater prawn Macrobrachium rosenbergii (Crustacea: Decapoda). Archives of Environmental Contamination and Toxicology, 52: 73–79.

    Article  Google Scholar 

  • Li, X. Z., Liu, R.Y., and Liang, X. Q., 2002. The zoogeography of Chinese Palaemonoidea fauna. Chinese Biodiversity, 11 (5): 393–406.

    Google Scholar 

  • Liang, Z. X., Li, J., Li, J. T., Tan, Z. J., Ren, H., and Zhao, F. Z., 2014. Toxic dinoflagellate Alexandrium tamarense induces oxidative stress and apoptosis in hepatopancreas of shrimp (Fenneropenaeus chinensis). Journal of Ocean University of China, 13 (6): 1005–1011.

    Article  Google Scholar 

  • Mallatt, J., 1985. Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42 (4): 630–648.

    Article  Google Scholar 

  • Marklund, S., and Marklund, G., 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47 (3): 469–474.

    Article  Google Scholar 

  • Moore, M. N., 1985. Cellular responses to pollutants. Marine Pollution Bulletin, 16 (4): 134–139.

    Article  Google Scholar 

  • Oda, T., Akaike, T., Sato, K., Ishimatsu, A., Takeshita, S., Muramatsu, T., and Maeda, H., 1992. Hydroxyl radical generation by red tide algae. Archives of Biochemistry and Biophysics, 294 (1): 38–43.

    Article  Google Scholar 

  • Oda, T., Nakashima, T., Shikayama, M., Kawano, L., Ishimatsu, A., and Muramatsu, T., 1997. Generation of reactive oxygen species by raphidophycean phytoplankton. Bioscience, Biotechnology, and Biochemistry, 61 (10): 1658–1662.

    Article  Google Scholar 

  • Odendaal, J., and Reinecke, A., 2003. Quantifying histopathological alterations in the hepatopancreas of the woodlouse Porcellio laevis (Isopoda) as a biomarker of cadmium exposure. Ecotoxicology and Environmental Safety, 56 (2): 319–325.

    Article  Google Scholar 

  • Ohkawa, H., Ohishi, N., and Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95 (2): 351–358.

    Article  Google Scholar 

  • Ott, M., Gogvadze, V., Orrenius, S., and Zhivotovsky, B., 2007. Mitochondria, oxidative stress and cell death. Apoptosis, 12 (5): 913–922.

    Article  Google Scholar 

  • Páez-Osuna, F., Gracia, A., Flores-Verdugo, F., Lyle-Fritch, L. P., Alonso-Rodri´, R., Roque, A., and Ruiz-Fernández, A. C., 2003. Shrimp aquaculture development and the environment in the Gulf of California ecoregion. Marine Pollution Bulletin, 46 (7): 806–815.

    Article  Google Scholar 

  • Pinho, G. L. L., Moura da Rosa, C., Maciel, F. E., Bianchini, A., Yunes, J. S., Proença, L. A. O., and Monserrat, J. M., 2005. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotoxicology and Environmental Safety, 61 (3): 353–360.

    Article  Google Scholar 

  • Ran, Q., Liang, H., Ikeno, Y., Qi, W., Prolla, T. A., Roberts, L. J., Wolf, N., VanRemmen, H., and Richardson, A., 2007. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62 (9): 932–942.

    Article  Google Scholar 

  • Ren, X., Pan, L., and Wang, L., 2015. Toxic effects upon exposure to benzo[a]pyrene in juvenile white shrimp Litopenaeus vannamei. Environmental Toxicology and Pharmacology, 39 (1): 194–207.

    Article  Google Scholar 

  • Rotruck, J., Pope, A., Ganther, H., Swanson, A., Hafeman, D. G., and Hoekstra, W., 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179 (4073): 588–590.

    Article  Google Scholar 

  • Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X., and Choi, A. M., 2007. Mechanisms of cell death in oxidative stress. Antioxidants and Redox Signaling, 9 (1): 49–89.

    Article  Google Scholar 

  • Sierra-Beltrán, A. P., Cortés-Altamirano, R., and Cortés-Lara, M. C., 2005. Occurrences of Prorocentrum minimum (Pavillard) in México. Harmful Algae, 4 (3): 507–517.

    Article  Google Scholar 

  • Sousa, L. G., and Petriella, A. M., 2000. Histology of the hepatopancreas of the freshwater prawn Palaemonetes argentinus (Crustacea, Caridea). Biocell, 24 (3): 189–195.

    Google Scholar 

  • Sousa, L. G., Cuartas, E. I., and Petriella, A. M., 2005. Fine structural analysis of the epithelial cells in the hepatopancreas of Palaemonetes argentinus (Crustacea, Decapoda, Caridea) in intermoult. Biocell, 29 (1): 25–31.

    Google Scholar 

  • Tango, P. J., Magnien, R., Butler, W., Luckett, C., Luckenbach, M., Lacouture, R., and Poukish, C., 2005. Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay. Harmful Algae, 4 (3): 525–531.

    Article  Google Scholar 

  • Victor, B., Narayanan, M., and Nelson, D. J., 1990. Gill pathology and hemocyte response in mercury exposed Macrobrachium idea (Heller). Journal of Environmental Biology, 11 (1): 61–65.

    Google Scholar 

  • Vlamis, A., Katikou, P., Rodriguez, I., Rey, V., Alfonso, A., Papazachariou, A., Zacharaki, T., Botana, A. M., and Botana, L. M., 2015. First detection of tetrodotoxin in Greek shellfish by UPLC-MS/MS potentially linked to the presence of the dinoflagellate Prorocentrum minimum. Toxins, 7 (5): 1779–1807.

    Article  Google Scholar 

  • Vogt, G., 1987. Monitoring of environmental pollutants such as pesticides in prawn aquaculture by histological diagnosis. Aquaculture, 67 (1-2): 157–164.

    Article  Google Scholar 

  • Wang, X. H., Qu, R. J., Huang, Q. G., Wei, Z. B., and Wang, Z. Y., 2015. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. Aquatic Toxicology, 160: 142–150.

    Article  Google Scholar 

  • Wang, X. Q., Yan, B. L., Ma, S., and Dong, S. L., 2005. Study on the biology and cultural ecology of Exopalaemon carinicauda. Shandong Fisheries, 22 (8): 21–24.

    Google Scholar 

  • Wei, K. Q., and Yang, J. X., 2015. Oxidative damage of hepatopancreas induced by pollution depresses humoral immunity response in the freshwater crayfish Procambarus clarkii. Fish and Shellfish Immunology, 43 (2): 510–519.

    Article  Google Scholar 

  • Winston, G. W., 1991. Oxidants and antioxidants in aquatic animals. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 100 (1-2): 173–176.

    Article  Google Scholar 

  • Wu, J. P., Chen, H. C., and Huang, D. J., 2008. Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp, Litopenaeus vannamei. Chemosphere, 73 (7): 1019–1026.

    Article  Google Scholar 

  • Xu, H. L., Min, G. S., Choi, J. K., and Zhu, M. Z., 2010. Temporal population dynamics of the dinoflagellate Prorocentrum minimum in a semi-enclosed mariculture pond and its relationship to environmental factors and protozoan grazers. Chinese Journal of Oceanology and Limnology, 28 (1): 75–81.

    Article  Google Scholar 

  • Xu, W. J., and Pan, L. Q., 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture, 412-413: 117–124.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Special Fund for Agro-scientific Research in the Public Interest of China (No. 2060302201515013), and the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, C., Ren, X., Ge, Q. et al. Antioxidant response of ridgetail white prawn Exopalaemon carinicauda to harmful dinoflagellate Prorocentrum minimum exposure and its histological change. J. Ocean Univ. China 16, 285–293 (2017). https://doi.org/10.1007/s11802-017-3170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3170-6

Key words

Navigation