Skip to main content
Log in

Process control factors for continuous microbial perchlorate reduction in the presence of zero-valent iron

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Process control parameters influencing microbial perchlorate reduction via a flow-through zero-valent iron (ZVI) column reactor were investigated in order to optimize perchlorate removal from water. Mixed perchlorate reducers were obtained from a wastewater treatment plant and inoculated into the reactor without further acclimation. Examined parameters included hydraulic residence time (HRT), pH, nutrients requirement, and perchlorate reduction kinetics. The minimum HRT for the system was concluded to be 8 hr. The removal efficiency of 10 mg·L−1 influent perchlorate concentration was reduced by 20%–80% without control to the neutral pH (HRT = 8 hr). Therefore pH was determined to be an important parameter for microbial perchlorate reduction. Furthermore, a viable alternative to pH buffer was discussed. The microbial perchlorate reduction followed the first order kinetics, with a rate constant (K) of 0.761 hr−1. The results from this study will contribute to the implementation of a safe, cost effective, and efficient system for perchlorate reduction to below regulated levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Houge C. Changing course on perchlorate. Chemical and Engineering News, 2011, 89(6): 6–7

    Google Scholar 

  2. ITRC. Perchlorate: overview of issues, status, and remedial options. http://itrcweb.org. 2005

    Google Scholar 

  3. EPA, Interim drinking water health advisory for perchlorate. 2008

    Google Scholar 

  4. Renner R. EPA perchlorate decision flawed, say advisers. Environmental Science and Technology, 2009, 43(3): 553–554

    Article  CAS  Google Scholar 

  5. Srinivasan R, Sorial G A. Treatment of perchlorate in drinking water: a critical review. Seperation and Purification Technologies, 2009, 69(1): 7–21

    Article  CAS  Google Scholar 

  6. Hurley K D, Shapley J R. Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science and Technology, 2007, 41(6): 2044–2049

    Article  CAS  Google Scholar 

  7. Trumpolt C W, Crain M, Cullison G D, Flanagan S J P, Siegel L, Lathrop S. Perchlorate: sources, uses, and occurrences in the environment. Remediation Journal, 2005, 16(1): 65–89

    Article  Google Scholar 

  8. EPA. Known perchlorate releases in the U.S. 2005, http://epa.gov/fedfac/documents/perchlorate_links.htm#occurrences

    Google Scholar 

  9. Dasgupta P K, Kirk A B, Dyke J V, Ohira S. Intake of iodine and perchlorate and excretion in human milk. Environmental Science and Technology, 2008, 42(21): 8115–8121

    Article  CAS  Google Scholar 

  10. Murray C W, Egan S K, Kim H, Beru N, Bolger P M. US food and drug administration’s total diet study: dietary intake of perchlorate and iodine. Journal of Exposure Science and Environmental Epidemiology, 2008, 18(6): 571–580

    Article  CAS  Google Scholar 

  11. Greer M A, Goodman G, Pleus R C, Greer S E. Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environmental Health Perspectives, 2002, 110(9): 927–937

    Article  CAS  Google Scholar 

  12. Motzer W E. Perchlorate: problems, detection, and solutions. Environmental Forensics, 2001, 2(4): 301–311

    Article  CAS  Google Scholar 

  13. Xu J, Song Y, Min B, Steinberg L, Logan B E. Microbial degradation of perchlorate: principles and applications. Environmental Engineering Science, 2003, 20(5): 405–422

    Article  CAS  Google Scholar 

  14. Coates J D, Michaelidou U, Bruce R A, O’Connor S M, Crespi J N, Achenbach L A. Ubiquity and diversity of dissimilatory (per) chlorate-reducing bacteria. Applied and Environmental Microbiology, 1999, 65(12): 5234–5241

    CAS  Google Scholar 

  15. Okeke B C, Frankenberger W T Jr. Molecular analysis of a perchlorate reductase from perchlorate-respiring bacterium Perclace. Microbiological Research, 2003, 158(4): 337–344

    Article  CAS  Google Scholar 

  16. Min B, Evans P J, Chu A K, Logan B E. Perchlorate removal in sand and plastic media bioreactors. Water Research, 2004, 38(1): 47–60

    Article  CAS  Google Scholar 

  17. Kim K, Logan B E. Microbial reduction of perchlorate in pure and mixed culture packed-bed bioreactors. Water Research, 2001, 35(13): 3071–3076

    Article  CAS  Google Scholar 

  18. Nor S J, Lee S H, Cho K S, Cha D K, Lee K I, Ryu H W. Microbial treatment of high-strength perchlorate wastewater. Bioresource Technology, 2011, 102(2): 835–841

    Article  CAS  Google Scholar 

  19. Ahn S C, Cha D K, Kim B J, Oh S Y. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate. Journal of Hazardous Materials, 2011, 192(2): 909–914

    Article  CAS  Google Scholar 

  20. Miller J P, Logan B E. Sustained perchlorate degradation in an autotrophic, gas-phase, packed-bed bioreactor. Environmental Science & Technology, 2000, 34(14): 3018–3022

    Article  CAS  Google Scholar 

  21. Zhang H, Bruns M A, Logan B E. Perchlorate reduction by a novel chemolithoautotrophic, hydrogen-oxidizing bacterium. Environmental Microbiology, 2002, 4(10): 570–576

    Article  CAS  Google Scholar 

  22. Giblin T L, Herman D C, Frankenberger W T. Removal of perchlorate from ground water by hydrogen-utilizing bacteria. Journal of Environmental Quality, 2000, 29(4): 1057–1062

    Article  CAS  Google Scholar 

  23. Nerenberg R, Rittmann B E, Najm I. Perchlorate reduction in a hydrogen-based membrane biofilm reactor. Journal-American Water Works Association, 2002, 94: 103–114

    CAS  Google Scholar 

  24. Nerenberg R, Kawagoshi Y, Rittmann B E. Kinetics of a hydrogenoxidizing, perchlorate-reducing bacterium. Water Research, 2006, 40(17): 3290–3296

    Article  CAS  Google Scholar 

  25. Logan B E. A review of chlorate- and perchlorate-respiring microorganisms. Bioremediation Journal, 1998, 2(2): 69–79

    Article  CAS  Google Scholar 

  26. Yu X, Amrhein C, Deshusses M A, Matsumoto M R. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron. Environmental Science and Technology, 2006, 40(4): 1328–1334

    Article  CAS  Google Scholar 

  27. Son A, Lee J, Chiu P C, Kim B J, Cha D K. Microbial reduction of perchlorate with zero-valent iron. Water Research, 2006, 40(10): 2027–2032

    Article  CAS  Google Scholar 

  28. Ju X, Sierra-Alvarez R, Field J, Byrnes D J, Bentley H, Bentley R. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere, 2008, 71(1): 114–122

    Article  CAS  Google Scholar 

  29. Sahu A K, Conneely T, Nusslein K R, Ergas S J. Biological perchlorate reduction in packed bed reactors using elemental sulfur. Environmental Science and Technology, 2009, 43(12): 4466–4471

    Article  CAS  Google Scholar 

  30. Yu X, Amrhein C, Deshusses M A. Perchlorate reduction by autotrophic bacteria attached to zerovalent iron in a flow-through reactor. Environmental Engineering Science, 2007, 41: 990–997

    CAS  Google Scholar 

  31. Son A, Schmidt C J, Shin H, Cha D K. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron. Journal of Hazardous Materials, 2011, 185(2–3): 669–676

    Article  CAS  Google Scholar 

  32. Logan B E. Analysis of overall perchlorate removal rates on packed bed bioreactors. Journal of Environmental Engineering, 2001, 127(5): 469–471

    Article  CAS  Google Scholar 

  33. Hautman, D P, Munch D J. EPA method 314.0. Determination of perchlorate in drinking water using ion chromatography. 1999

    Google Scholar 

  34. Fetter C W. Applied Hydrogeology. 4th ed. London: Prentice Hall, 2001

    Google Scholar 

  35. Shrout J D, Williams A G B, Scherer MM, Parkin G F. Inhibition of bacterial perchlorate reduction by zero valent iron. Biodegradation, 2005, 16(1): 23–32

    Article  CAS  Google Scholar 

  36. Wu D, He P, Xu X, Zhou M, Zhang Z, Houda Z. The effect of various reaction parameters on bioremediation of perchloratecontaminated water. Journal of Hazardous Materials, 2008, 150(2): 419–423

    Article  CAS  Google Scholar 

  37. Wang C, Lippincott L, Meng X. Kinetics of biological perchlorate reduction and pH effect. Journal of Hazardous Materials, 2008, 153(1–2): 663–669

    Article  CAS  Google Scholar 

  38. Logan B E, Zhang H S, Mulvaney P, Milner M G, Head I M, Unz R F. Kinetics of perchlorate- and chlorate-respiring bacteria. Applied and Environmental Microbiology, 2001, 67(6): 2499–2506

    Article  CAS  Google Scholar 

  39. Tchobanaglous G. Wastewater Engineering: Treatment, Disposal, and Reuse. New York: McGraw Hill, 1991

    Google Scholar 

  40. NRC. Use of reclaimed water and sludge in food crop production. EPA: Washington, DC, 1996

    Google Scholar 

  41. Cookson J T. Removal of submicron particles in packed beds. Environmental Science and Technology, 1970, 4(2): 128–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahjeong Son.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arthur, R.D., Torlapati, J., Shin, KH. et al. Process control factors for continuous microbial perchlorate reduction in the presence of zero-valent iron. Front. Environ. Sci. Eng. 8, 386–393 (2014). https://doi.org/10.1007/s11783-013-0593-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0593-1

Keywords

Navigation