Skip to main content
Log in

Rehabilitation of bauxite residue to support soil development and grassland establishment

赤泥堆场修复促进土壤发育和植被重建

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rehabilitation (amendment and vegetation establishment) on bauxite residue is viewed as a promising strategy to stabilize the surface and initiate soil development. However, such approaches are inhibited by high pH, high exchangeable sodium (ESP) and poor nutrient status. Amendment with gypsum is effective in improving residue physical and chemical properties and promoting seed establishment and growth. Application of organics (e.g. compost) can address nutrient deficiencies but supplemental fertilizer additions may be required. A series of germination bioassays were performed on residue to determine candidate species and optimum rehabilitation application rates. Subsequent field trials assessed establishment of grassland species Holcus lanatus and Trifolium pratense as well as physical and chemical properties of amended residue. Follow up monitoring over five years assessed elemental content in grassland and species dynamics. With co-application of the amendments several grassland species can grow on the residue. Over time other plant species can invade the restored area and fast growing nutrient demanding grasses are replaced. Scrub species can establish within a 5 Yr period and there is evidence of nutrient cycling. High pH, sodicity and nutrient deficiencies are the major limiting factors to establishing grassland on residue. Following restoration several plant species can grow on amended residue.

摘要

赤泥是氧化铝工业生产过程排放的强碱性固体废物,盐碱性强和营养元素匮乏是影响赤泥堆场 植物生长的主要限制因素。对赤泥堆场的长期野外研究,分析基质改良对赤泥理化特性和植物多样性 的影响,结果表明:施用石膏后,赤泥pH 和可交换钠明显降低,黑麦草和红牛轴草发芽指数分别由 22%和42%提高到100%;施用堆肥显著提高赤泥碳、氮、磷等养分元素含量;赤泥改良1 年后,绒 毛草主要元素含量与普通草地植物元素含量相似;基质改良5 年后,绒毛草和红牛轴草钠含量显著降 低,分别由0.6%和0.58%降低到0.3%和0.1%,赤泥堆场优势物种为菊科、豆科和禾本科植物。研究 结果对赤泥土壤化研究及堆场生态修复实践具有重要的参考价值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XUE Sheng-guo, WU Yu-jun, LI Yi-wei, KONG Xiang-feng, ZHU Feng, WILLIAM Hartley, LI Xiao-fei, YE Yu-zhen. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review [J]. Journal of Central South University, 2019, 26(2): 268–288.

    Article  Google Scholar 

  2. XUE Sheng-guo, LI Meng, JIANG Jun, MILLAR G J, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics [J]. Journal of Environmental Sciences, 2019, 77: 1–10. DOI: 10.1016/j.jes.2018.05.016

    Article  Google Scholar 

  3. BURKE I T, MAYES W M, PEACOCK, C L, BROWN A P, JARVIS A P, GRUIZ K. Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary [J]. Environmental Science & Technology, 2012, 46(6): 3085–3092. DOI: 10.1021/es3003475.

    Article  Google Scholar 

  4. KLAUBER C, GRAFE M, POWER G. Bauxite residue issues: II. Options for residue utilization [J]. Hydrometallurgy, 2011, 108(1, 2): 11–32. DOI: 10.1016/j.hydromet.2011.02.007.

    Google Scholar 

  5. UJACZKI É, FEIGL V, MOLNAR M, CUSACK P, CURTIN T, COURTNEY R, O'DONOGHUE L, DAVRIS P, HUGI C, EVANGELOU M W, BALOMENOS E. Reusing bauxite residues: Benefits beyond (critical raw) material recovery [J]. Journal of Chemical Technology & Biotechnology, 2018, 93(9): 2498–2510. DOI: 10.1002/jctb.5687.

    Article  Google Scholar 

  6. POWER G, GRAEFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices [J]. Hydrometallurgy, 2011, 108(1, 2): 33–45. DOI: 10.1016/j.hydromet.2011.02.006.

    Google Scholar 

  7. MAYES W M, JARVIS A P, BURKE I T, WALTON M, FEIGL V, KLEBERCZ O, GRUIZ K. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue (red mud) depository failure, Hungary [J]. Environmental Science & Technology, 2011, 45(12): 5147–5155. DOI: 10.1021/es200850y.

    Article  Google Scholar 

  8. RUYTERS S, MERTENS J, VASSILIEVA E, DEHANDSCHUTTER B, POFFIJN A, SMOLDERS E. The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil [J]. Environmental Science & Technology, 2011, 45(4): 1616–1622. DOI: 10.1021/es104000m.

    Article  Google Scholar 

  9. BURKE I T, MAYES W M, PEACOCK, C L, BROWN A P, JARVIS A P, GRUIZ K. Speciation of arsenic, chromium, and vanadium in red mud samples from the Ajka spill site, Hungary [J]. Environmental Science & Technology, 2012, 46(6): 3085–3092. DOI: 10.1021/es3003475.

    Article  Google Scholar 

  10. OLSZEWSKA J P, MEHARG A A, HEALK V, CAREY M, GUNN I D, SEARLE K R, WINFIELD I J, SPEARS B M. Assessing the legacy of red mud pollution in a shallow freshwater lake: Arsenic accumulation and speciation in macrophytes [J]. Environmental Science & Technology, 2016, 50(17): 9044–9052. DOI: 10.1021/acs.est.6b00942.

    Article  Google Scholar 

  11. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of aggregate microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573: 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.

    Article  Google Scholar 

  12. ZHU Feng, XUE Sheng-guo, HARTLEY W, HUANG Ling, WU Chuan, LI Xiao-bin. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23: 2856–2863. DOI: 10.1007/s11356-015-5537-9.

    Article  Google Scholar 

  13. REN Jie, CHEN Juan, HAN Lei, WANG Mei, YANG Bin, DU Ping, LI Fa-sheng. Spatial distribution of heavy metals, salinity and alkalinity in soils around bauxite residue disposal area [J]. Science of the Total Environment, 2018, 628: 1200–1208. DOI: 10.1016/j.scitotenv.2018.02.149.

    Article  Google Scholar 

  14. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, WILLIAM H. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23: 1120–1132. DOI: 10.1007/s11356-015–4558-8.

    Article  Google Scholar 

  15. LIAO Jia-xin, JIANG Jun, XUE Sheng-guo, CHENG Qing, WU Hao, MANIKANDAN R, HARTLEY W, HUANG Long. A novel acid-producing fungus isolated from bauxite residue: the potential to reduce the alkalinity [J]. Geomicrobiology Journal, 2018, 35(10): 840–847. DOI: 10.1080/01490451.2018.1479807.

    Article  Google Scholar 

  16. COURTNEY R, MULLEN G, HARRINGTON T. An evaluation of revegetation success on bauxite residue [J]. Restoration Ecology, 2009a, 17: 350–358. DOI: 10.1111/j.1526-100X.2008.00375. x.

    Google Scholar 

  17. CHEN Cheng, PHILLIPS I R, WEI Li, XU Zhi. Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia—II. Phosphorus fractions and availability [J]. Environmental Science & Pollution Research, 2010, 17: 1110–1118. DOI: 10.1007/s11356-009-0268-4.

    Article  Google Scholar 

  18. COURTNEY R, HARRINGTON T. Growth and nutrition of holcus lanatus in bauxite residue amended with combinations of spent mushroom compost and gypsum [J]. Land Degradation & Development, 2012, 23(2): 144–149. DOI: 10.1002/ldr.1062.

    Article  Google Scholar 

  19. SANTINI T C, KERR J L, WARREN L A. Microbiallydriven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293: 131–157. DOI: 10.1016/j.jhazmat.2015.03.024.

    Article  Google Scholar 

  20. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29: 138–149. DOI: 10.1002/ldr.2848.

    Article  Google Scholar 

  21. XUE Sheng-guo, YE Yu, ZHU Feng, WANG Qiong, JIANG Jun, HARTLEY W. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition [J]. Journal of Environmental Sciences, 2019, 78: 276–286. DOI: 10.1016/j.jes.2018.10.010.

    Article  Google Scholar 

  22. COURTNEY R, MULLEN G. Use of germination and seedling performance bioassays for assessing revegetation strategies on bauxite residue [J]. Water, Air, and Soil Pollution, 2009, 197: 15–22. DOI: 10.1007/s11270-008-9787–8.

    Article  Google Scholar 

  23. GRAFE M, KLAUBER C. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation [J]. Hydrometallurgy, 2011, 108(1, 2): 46–59. DOI: 10.1016/j.hydromet.2011.02.005.

    Google Scholar 

  24. MEECHAM J R, BELL L C. Revegetation of alumina refinery wastes. 1. Properties and amelioration of the materials [J]. Australian Journal of Experimental Agriculture, 1977, 17: 679–688. DOI: 10.1071/ea9770679.

    Google Scholar 

  25. COURTNEY R, HARRINGTON T. Assessment of plantavailable phosphorus in a fine textured sodic substrate [J]. Ecological Engineering, 2010, 36(4): 542–547. DOI: 10.1016/j.ecoleng.2009.12.001.

    Article  Google Scholar 

  26. THIYAGARAJAN C, PHILLIPS I R, DELL B, BELL R W. Micronutrient fractionation and plant availability in bauxite-processing residue sand [J]. Australian Journal of Soil Research, 2009, 47: 518–528. DOI: 10.1071/SR08201.

    Article  Google Scholar 

  27. COURTNEY R, HARRINGTON T. Growth and nutrition of Holcus Lanatus in bauxite residue amended with combinations of spent mushroom compost and gypsum [J]. Land Degradation & Development, 2012, 23(2): 144–149.DOI: 10.1002/ldr.1062.

    Article  Google Scholar 

  28. ZHU Feng, HOU Jing, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation & Development, 2017, 28(7): 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  29. FULLER R D, NELSON E D P, RICHARDSON C J. Reclamation of red mud (bauxite residues) using alkaline-tolerant grasses with organic amendments [J]. Journal of Environmental Quality, 1982, 11: 533–539. DOI: 10.2134/jeq1982.00472425001100030040x.

    Article  Google Scholar 

  30. WONG J, HO G. Use of waste gypsum in the revegetation on red mud deposits: A greenhouse study [J]. Waste Management and Research, 1993, 11: 249–256. DOI: 10.1006/wmre.1993.1024.

    Article  Google Scholar 

  31. COURTNEY R G, JORDAN S N, HARRINGTON T. Physio-chemical changes in bauxite residue following application of spent mushroom compost and gypsum [J]. Land Degradation and Development, 2009b, 20: 572–581. DOI: 10.1002/ldr.926.

    Google Scholar 

  32. COURTNEY R, HARRIS J A, PAWLETT M. Microbial community composition in a rehabilitated bauxite residue disposal area: A case study for improving microbial community composition [J]. Restoration Ecology, 2014, 22(6): 798–805. DOI: 10.1111/rec.12143.

    Article  Google Scholar 

  33. COURTNEY R G, TIMPSON J P. Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum [J]. Water Air and Soil Pollution, 2005. 164(1–4): 91–102. DOI: 10.1007/s11270-005–2251-0.

    Google Scholar 

  34. EASTHAM J, MORALD T, AYLMORE P. Effective nutrient sources for plant growth on bauxite residue: II. Evaluating the response to inorganic fertilizers [J]. Water, Air, and Soil Pollution, 2006, 171: 315–331. DOI: 10.1007/s11270-005-9055–8.

    Article  Google Scholar 

  35. GOLORAN J B, CHEN Chen, PHILLIPS I R, XU Zhi, CONDRON L M. Selecting a nitrogen availability index for understanding plant nutrient dynamics in rehabilitated bauxite-processing residue sand [J]. Ecological Engineering, 2013, 58: 228–237. DOI: 10.1016/j.ecoleng. 2013.07.004.

    Article  Google Scholar 

  36. GOLORAN J B, CHEN C R, PHILLIPS I R, XU Z H, CONDRON L M. Plant phosphorus availability index in rehabilitated bauxite-processing residue sand [J]. Plant and Soil, 2014, 374(1, 2): 565–578. DOI: 10.1007/s11104-013-1900–0.

    Article  Google Scholar 

  37. SUMNER M E, NAIDU R. Sodic Soils: Distribution, properties, management and environmental consequences [M]. London: Oxford University Press, 1998: 19–34.

    Google Scholar 

  38. BRAY A W, STEWART D I, COURTNEY R, ROUT S P, HUMPHREYS P N, MAYES W M, BURKE I T. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment [J]. Environmental Science & Technology, 2017, 52: 152–161. DOI: 10.1021/acs.est.7b03568.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan Courtney.

Additional information

Foundation item: Projects(41877551, 41842020) supported by the National Natural Science Foundation of China;Project supported by the Science Foundation Ireland 17/CDA/4778

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtney, R., Xue, Sg. Rehabilitation of bauxite residue to support soil development and grassland establishment. J. Cent. South Univ. 26, 353–360 (2019). https://doi.org/10.1007/s11771-019-4007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4007-9

Key words

关键词

Navigation