Skip to main content
Log in

Natural ripening with subsequent additions of gypsum and organic matter is key to successful bauxite residue revegetation

自然熟化及施用石膏和有机物质是赤泥堆场修复的关键

  • Review
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The processes involved in the major steps of successful revegetation of bauxite residues are examined. The first phase is the natural physical, chemical and microbial ripening of the profile. This involves allowing the profile to drain, dry, shrink and crack to depth, leaching of soluble salts, alkalinity and Na down out of the surface layers, acidification by direct carbonation and natural seeding of tolerant vegetation with an accumulation of organic matter near the surface and an attendant development of an active microbial community. Following ripening, the surface layer can be tilled and gypsum and organic matter (e.g. manures, composts, biosolids) incorporated. These amendments result in a further decrease in pH, increase in Ca and other exchangeable cations, increased leaching of Na (with a reduction in exchangeable Na and ESP), improved physical properties, particularly aggregation, and a large increase in microbial activity. Other important considerations include the choice of suitable plant species tolerant to salinity/sodicity and local environmental conditions and the addition of balanced fertilizer applications.

摘要

本文探讨了赤泥堆场生态修复的主要过程。第一个重要过程就是赤泥物理、化学和微生物特性 的自然熟化,主要包括:允许剖面排水、干燥、收缩和开裂至一定的深度;表面层可溶性盐、碱和钠 的向下溶淋,并通过直接碳酸化进行酸化;抗性植被的自然播种、表层附近有机质的富集以及随之而 产生的活性微生物群落的形成。堆场赤泥熟化后,表层施用石膏和有机特质(如粪肥、堆肥、生物固 形物),这些改良剂的添加会进一步降低pH,提高钙和其他可交换阳离子的水平,促进钠的溶淋(降 低可交换钠离子和ESP),改善赤泥的物理性质、提高微生物的活性。其他重要因素还包括选择合适 的耐盐、耐碱及适应当地环境条件的植物种类、施用合适的肥料等。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POWER G, GRAFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices [J]. Hydrometallurgy, 2011, 108(1, 2): 33–45. DOI: https://doi.org/10.1016/j.hydromet.2011.02.006.

    Google Scholar 

  2. XUE Sheng-guo, ZHU Feng, KONG Xiang-feng, WU Chuan, HUANG Ling, HUANG Nan, HARTLEY W. A review of the characterization and revegetation of bauxite residues (red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132. DOI: 10.1007/s11356-015–4558-8.

    Article  Google Scholar 

  3. JONES B E, HAYNES R J. Bauxite processing residue: a critical review of its formation, properties, storage and revegetation [J]. Critical Reviews in Environmental Science and Technology, 2011, 41(1): 271–315. DOI: 10.1080/10643380902800000.

    Article  Google Scholar 

  4. KLAUBER C, GRAFE M, POWER G. Bauxite residue issues II: Options for residue utilization [J]. Hydrometallurgy, 2011, 108(1, 2): 11–32. DOI: https://doi.org/10.1016/j.hydromet.2011.02.007.

    Article  Google Scholar 

  5. UJACZKI E, FEIGL V, MOLNAR M, CUSACK P, CURTIN T, COURTNEY R, O'DONOGHUE L, DAVRIS P, HUGI C, EVANGELOU M W, BALOMENOS E. Re-using bauxite residues: Benefits beyond (critical raw) material recovery [J]. Journal of Chemical Technology and Biotechnology, 2018, 93(9): 2498–2510. DOI: https://doi.org/10.1002/jctb.5687.

    Article  Google Scholar 

  6. LI Y, HAYNES R J. Formation, properties and revegetation prospects for bauxite processing residue and the effects of seawater neutralization [J]. International Journal of Environmental Engineering, 2017, 9(1): 11–39. DOI: https://doi.org/10.1504/IJEE.2017.087984.

    Article  Google Scholar 

  7. GRAFE M, KLAUBER C, POWER G. Bauxite residue issues: III Alkalinity and associated chemistry [J]. Hydrometallurgy. 2011, 108(1, 2): 60–79. DOI: https://doi.org/10.1016/j.hydromet.2011.02.004.

    Google Scholar 

  8. XUE Sheng-guo, KONG Xiang-feng, ZHU Feng, HARTLEY W, LI Xiao-fei, LI Yi-wei. Proposal for management and alkalinity transformation of bauxite residue in China [J]. Environmental Science and Pollution Research, 2016, 23(13): 12822–12834. DOI: 10.1007/s11356-016-6478–7.

    Article  Google Scholar 

  9. VERMEULEN J, van DIJK S G, GROTENHUIS J T C, RULKENS W H. Quantification of physical properties of dredged sediments during physical ripening [J]. Geoderma, 2005, 129(3, 4): 147–166. DOI: https://doi.org/10.1016/j.geoderma. 2004.12.040.

    Article  Google Scholar 

  10. COURTNEY R, MULLEN G, HARRINGTON T. An evaluation of revegetation success on bauxite residue [J]. Restoration Ecology, 2009, 17(3): 350–358. DOI: https://doi.org/10.1111/j.1526-100X.2008.00375.x.

    Article  Google Scholar 

  11. EVANS K. The history, challenges, and new developments in the management and use of bauxite residue [J]. Journal of Sustainable Metallurgy, 2016, 2(1): 316–331. DOI 10.1007/s40831-016-0060-x.

    Article  Google Scholar 

  12. VERMEULEN J, GROTENHUIS T, JOZIASSE J, RULKENS W. Ripening of clayey dredged sediments during temporary upland disposal a bioremediation technique [J]. Journal of Soils and Sediments, 2003, 3(1): 49–59. DOI: 10.1007/BF02989469.

    Article  Google Scholar 

  13. NGUYEN Q D, BOGER D V. Application of rheology to solving tailings disposal problems [J]. International Journal of Mineral Processing, 1998, 54(3, 4): 217–233. DOI: https://doi.org/10.1016/S0301-7516(98)00011-8.

    Article  Google Scholar 

  14. WILLAN M B, GHATAORA G S. Management of bauxite residue in temperate climate using mud-farming techniques [C]//JEWELL R J, FOURIE A B. Proceedings of the 18th International Seminar on Paste and Thickened Tailings. Perth, Australia: Australian Centre of Geomechanics, 2015; 209–216. DOI: https://papers.acg.uwa.edu.au/p/1504_14_ Willan/.

    Google Scholar 

  15. WEHR J B, FULTON I, MENZIES N W. Revegetation strategies for bauxite refinery residue: A case study of Alcan Gove in Northern Territory, Australia [J]. Environmental Management, 2006, 37(3): 297–306. DOI: https://doi.org/10.1007/s00267-004-0385-2.

    Article  Google Scholar 

  16. RAO P P. The characteristics and genesis discussion of fracture in dry red mud disposal yard [J]. Industrial Construction 2010, 40(1): 73–77. DOI: https://doi.org/10.1016/j.jenvman.2018.06.070.

    Google Scholar 

  17. LI Y, HAYNES R J, CHANDRAWANA I, ZHOU Y F. Properties of seawater neutralized bauxite residues and changes in chemical, physical and microbial properties induced by additions of gypsum and organic matter [J]. Journal of Environmental Management, 2018, 223(1): 489–494. DOI: https://doi.org/10.1007/s11356-018-2564-3.

    Article  Google Scholar 

  18. LI Y, HAYNES R J, CHANDRAWANA I, ZHOU Y F. Increased leaching and addition of amendments improves the properties of seawater neutralized bauxite residue as a growth medium [J]. Environmental Science and Pollution Research, 2018, 25(25): 25476–25485. DOI: 10.1007/s11356-015-5537-9.

    Article  Google Scholar 

  19. ZHU Feng, XUE Sheng-guo, HARTLEY W, HUANG Ling, WU Chuan, LI Xiao-bin. Novel predictors of soil genesis following natural weathering processes of bauxite residues [J]. Environmental Science and Pollution Research, 2016, 23(3): 2856–2863. DOI: https://doi.org/10.1016/j.scitotenv. 2016. 08.108.

    Article  Google Scholar 

  20. ZHU Feng, LIAO Jia-xin, XUE Sheng-guo, HARTLEY W, ZOU Qi, WU Hao. Evaluation of microstructures following natural regeneration in bauxite residue as characterized by synchrotron-based X-ray micro-computed tomography [J]. Science of the Total Environment, 2016, 573(1): 155–163.

    Article  Google Scholar 

  21. ZHU Feng, ZHOU Jia, XUE Sheng-guo, HARTLEY W, WU Chuan, GUO Ying. Aging of bauxite residue in association of regeneration: A comparison of methods to determine aggregate stability and erosion resistance [J]. Ecological Engineering, 2016, 92(1): 47–54. DOI: https://doi.org/10.1016/j.ecoleng.2016.03.025.

    Article  Google Scholar 

  22. ZHU Feng, CHENG Qing, XUE Sheng-guo, LI Chu-xuan, HARTLEY W, WU Chuan, TIAN Tao. Influence of natural regeneration on fractal features of residue microaggregates in bauxite residue disposal areas [J]. Land Degradation and Development, 2018, 29(1): 138–149. DOI: https://doi.org/10.1002/ldr.2848.

    Article  Google Scholar 

  23. FULLER R D, NELSON E D P, RICHARDSON C J. Reclamation of red mud (bauxite residues) using alkalinetolerant grasses with organic amendments [J]. Journal of Environmental Management, 1982, 11(3): 533–539. DOI: 10.2134/jeq1982.00472425001100030040x.

    Article  Google Scholar 

  24. SNARS K, GILKES R J, WONG M. The liming effect of bauxite processing residue (red mud) on sandy soils [J]. Australian Journal of Soil Research, 2004, 42(2): 321–328. DOI: 10.1071/sr03021.

    Article  Google Scholar 

  25. JONES B E, HAYNES R J, PHILLIPS I R. Cation and anion leaching and growth of Acacia saligna in bauxite residue sand amended with residue mud, poultry manure and phosphogypsum [J]. Environmental Science and Pollution Research, 2012, 19(3): 835–846. DOI: 10.1007/s11356-011–0630-1.

    Article  Google Scholar 

  26. JONES B E, HAYNES R. J, PHILLIPS I R. Influence of amendments on acidification and leaching of Na from bauxite processing sand [J]. Ecological Engineering, 2015, 84(1): 435–442. DOI: https://doi.org/10.1016/j.ecoleng. 2015.09. 054.

    Google Scholar 

  27. KHAITIN S, DZOMBAK D A, SWALLOW P, SCHMIDT K, FU J, LOWRY G V. Field evaluation of bauxite residue neutralization by carbon dioxide, vegetation, and organic amendments [J]. Journal of Environmental Engineering, 2010, 136(10): 1045–1053. DOI: 10.1061/(ASCE)EE.1943-7870.0000230.

    Article  Google Scholar 

  28. CHAUHAN S, GANGULY A. Standardizing rehabilitation protocol using vegetation cover for bauxite waste (red mud) in eastern India [J]. Ecological Engineering, 2011, 37(3): 504–510. DOI: https://doi.org/10.1016/j.ecoleng.2010. 12.017.

    Article  Google Scholar 

  29. SANTINI T C, FEY M V. Spontaneous vegetation encroachment upon bauxite residue (red mud) as an indicator and facilitator of in situ remediation processes [J]. Environmental Science and Technology, 2013, 47(21): 12089–12096. DOI: 10.1021/es402924g.

    Article  Google Scholar 

  30. MISHRA T, SINGH N B, SINGH N. Restoration of red mud deposits by naturally growing vegetation [J]. International Journal of Phytoremediation 2017, 19(5): 439–445. DOI: 10.1080/15226514.2016.1244162.

    Book  Google Scholar 

  31. HAYNES R J. Nature of the belowground ecosystem and its development during pedogenesis [J]. Advances in Agronomy, 2014, 127(1): 43–109. DOI: https://doi.org/10.1016/B978-0-12–800131-8.00002-9.

    Article  Google Scholar 

  32. BANNING N C, PHILLIPS I R, JONES D L, MURPHY D V. Development of microbial diversity and functional potential in bauxite residue sand under rehabilitation [J]. Restoration Ecology, 2010, 19(101): 78–87. DOI: https://doi.org/10.1111/j.1526-100X.2009.00637.x.

    Article  Google Scholar 

  33. SANTINI T C, WARREN L A, KENDRA K E. Microbial diversity in engineered haloalkaline environments shaped by shared geochemical drivers observed in natural analogues [J]. Applied and Environmental Microbiology, 2015, 81(15): 5026–5036. DOI: 10.1128/AEM.01238-15.

    Article  Google Scholar 

  34. SCHMALENBERGER A, O’SULLIVAN O, GAHAN J, COTTER P D, COURTNEY R. Bacterial communities established in bauxite residues with different restoration histories [J]. Environmental Science and Technology, 2013, 47(13): 7110–7119. DOI: 10.1021/es401124w.

    Article  Google Scholar 

  35. XUE Sheng-guo, LI Meng, JIANG Jun, MILLAR G M, LI Chu-xuan, KONG Xiang. Phosphogypsum stabilization of bauxite residues: Conversion of its alkaline characteristics [J]. Journal of Environmental Science, 2019, 77: 1–10. DOI: https://doi.org/10.1016/j.jes.2018.05.016.

    Article  Google Scholar 

  36. WONG J W C, HO G E. Use of waste gypsum in the revegetation on red mud deposits: a greenhouse study [J]. Waste Management and Research, 1993, 11(3): 249–256. DOI: https://doi.org/10.1006/wmre.1993.1024.

    Article  Google Scholar 

  37. XENIDIS A, HAROKOPOU A D, MYLONA E, BROFAS G. 2005. Modifying alumina red mud to support a revegetation cover [J]. The Journal of the Minerals, Metals and Materials Society, 2005, 57(2): 42–46. DOI: https://doi.org/10.1007/s11837-005-0214-y.

    Article  Google Scholar 

  38. JONES B E, HAYNES R J, PHILLIPS I R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties [J]. Journal of Environmental Management, 2010, 91(1): 2281–2288. DOI: https://doi.org/10.1016/j.jenvman.2010. 06.013.

    Article  Google Scholar 

  39. JONES B E, HAYNES R J, PHILLIPS I R. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand [J]. Environmental Science and Pollution Research, 2011, 18(2): 199–211. DOI: 10.1007/s11356-010-0364-5.

    Article  Google Scholar 

  40. JONES B E, HAYNES R J, PHILLIPS I R. Addition of an organic amendment and/or residue mud to bauxite residue sand in order to improve its properties as a growth medium [J]. Journal of Environmental Management, 2012, 95(1): 29–38. DOI: 10.1016/j.jenvman.2011.09.014.

    Article  Google Scholar 

  41. COURTNEY R G, TIMPSON J P. Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge–A two year study [J]. Plant and Soil, 2004, 266(1, 2): 187–194. DOI: https://doi.org/10.1007/s11104-005-0872-0.

    Google Scholar 

  42. COURTNEY R G, HARRINGTON T. Growth and nutrition of Holcus lanatus in bauxite residue amended with combinations of spent mushroom compost and gypsum [J]. Land Degradation and Development, 2012, 23(2): 144–149. DOI: 10.1002/ldr.1062.

    Article  Google Scholar 

  43. COURTNEY R G, TIMPSON J P. Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum [J]. Water, Air, and Soil Pollution, 2005, 164(1–4): 91–102. DOI: 10.1007/s11270-005–2251-0.

    Article  Google Scholar 

  44. COURTNEY R, TIMPSON J P, GRENNAN E. Growth of Trifolium pratense in red mud amended with process sand, gypsum and thermally dried sewage sludge [J]. International Journal of Surface Mining, Reclamation and Environment, 2003, 17(4): 227–233. DOI: 10.1076/ijsm.17.4.227.17481.

    Article  Google Scholar 

  45. COURTNEY R, MULLEN G. Use of germination and seedling performance bioassays for assessing revegetation strategies on bauxite residue [J]. Water, Air and Soil Pollution, 2009, 197(1–4): 15–22. DOI: 10.1007/s11270-008–9787-8.

    Article  Google Scholar 

  46. COURTNEY R G, JORDAN S N, HARRINGTON T. Physico-chemical changes in bauxite residue following application of spent mushroom compost and gypsum [J]. Land Degradation and Development, 2009, 20(5): 572–581. DOI: 10.1002/ldr.926.

    Article  Google Scholar 

  47. COURTNEY R G, HARRINGTON T, BYRNE K A. Indicators of soil formation in restored bauxite residues [J]. Ecological Engineering, 2013, 58(1): 63–68. DOI: https://doi.org/10.1016/j.ecoleng.2013.06.022.

    Article  Google Scholar 

  48. BRAY A B, STEWART D I, COURTNEY R, ROUT S P, HUMPHRIES P N, MAYES W M, BURKE I T. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment [J]. Environmental Science and Technology, 2018, 52(1): 152–161. DOI: 10.1021/acs.est.7b03568.

    Article  Google Scholar 

  49. WHITTINGTON B I, FLETCHER B L, TALBOT C. The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions [J]. Hydrometallurgy, 1998, 49(1): 1–22. DOI: 10.1016/S0304-386X(98)00021-8.

    Article  Google Scholar 

  50. ZHU Feng, HOU Jing, XUE Sheng-guo, WU Chuan, WANG Qiong, HARTLEY W. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue [J]. Land Degradation and Development, 2017, 28(7): 2109–2120. DOI: 10.1002/ldr.2737.

    Article  Google Scholar 

  51. JONES D, HAYNES R, PHILLIPS I. Can organic amendments be used to improve the properties of bauxite processing residue sand? [C]//World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia: IUSS, 2010: 32–35. DOI: http://espace.library. uq.edu. au/view/UQ:234364.

    Google Scholar 

  52. FULLER R D, RICHARDSON C J. Aluminate toxicity as a factor controlling plant growth in bauxite residue [J]. Environmental Toxicological Chemistry 1986, 5(10): 905–915. DOI: 10.1002/etc.5620051007.

    Google Scholar 

  53. WONG J W, HO G. Sewage sludge as organic ameliorant for revegetation of fine bauxite refining residue [J]. Resources, Conservation and Recycling, 1994, 11(1–4): 297–309. DOI: https://doi.org/10.1016/0921-3449 (94) 90097–3.

    Article  Google Scholar 

  54. FORTIN J, KARAM A. Effect of a commercial peat moss-shrimp wastes compost on Pucinellia growth in red mud [J]. International Journal of Surface Mining, Reclamation and Environment, 1998, 12(3): 105–109. DOI: 10.1080/09208118908944032.

    Article  Google Scholar 

  55. WONG J W C, HO G E. Effects of gypsum and sewage sludge amendment on physical properties of fine bauxite refining residue [J]. Soil Science, 1991, 152(5): 326–332. DOI: 10.1097/00010694-199111000-00003.

    Article  Google Scholar 

  56. BANNING N C, SAWADA Y, PHILLIPS I R, MURPHY D V. Amendment of bauxite residue sand can alleviate constraints to plant establishment and nutrient cycling capacity in a water-limited environment [J]. Ecological Engineering, 2014, 62(1): 179–187.

    Article  Google Scholar 

  57. LI Ya. Revegetation strategies for seawater neutralized bauxite residue at Rio Tinto Alcan using various amendments [C]//School of Agriculture and Food Sciences, The University of Queensland, 2017. DOI: https://doi.org/10.14264/uql.2017.798.

    Book  Google Scholar 

  58. COURTNEY R, HARRIS J A, PAWLETT M. Microbial community composition in a rehabilitated bauxite residue disposal area: A case study for improving microbial community composition [J]. Restoration Ecology, 2014, 22(6): 798–805. DOI: 10.1111/rec.12143.

    Article  Google Scholar 

  59. COURTNEY R, KEITH A M, HARRINGTON T. Nematode assemblages in bauxite residue with different restoration histories [J]. Restoration Ecology, 2011, 19(6): 758–764. DOI: https://doi.org/10.1111/j.1526-100X.2010.00734.x.

    Article  Google Scholar 

  60. COURTNEY R, FEENEY E, O’GRADY A. An ecological assessment of rehabilitated bauxite residue [J]. Ecological Engineering, 2014, 73(1): 373–379. DOI: 10.1016/j.ecoleng.2014.09.064.

    Article  Google Scholar 

  61. GRAFE M, KLAUBER C. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation [J]. Hydrometallurgy, 2011, 108(1, 2): 46–59. DOI: 10.1016/j.hydromet.2011.02.005.

    Google Scholar 

  62. HAYNES R J. Sustainable vegetation [C]//Proceedings of the 10th International Alumina Quality Workshop, Post Conference Workshop-Maintaining a Flexible Approach to Closure and Rehabilitation of Residue Storage Areas. Perth, Australia, 2015.

    Google Scholar 

  63. COURTNEY R, MULLEN G, HARRINGTON, T. An evaluation of revegetation success on bauxite residue [J]. Restoration Ecology, 2009, 17(3): 350–358. DOI: https://doi.org/10.1111/j.1526-100X.2008.00375.x.

    Article  Google Scholar 

  64. BELL D T, WILKINS C F, VAN DER MOEZEL P G, WARD S C. Alkalinity tolerance of woody species used in bauxite waste rehabilitation, Western Australia [J]. Restoration Ecology, 1993, 1(1): 51–58. DOI: https://doi.org/10.1111/j.1526-100X.1993.tb00008.x.

    Article  Google Scholar 

  65. MENDEZ M O, MAIER R M. Phytostabilization of mine tailings in arid and semiarid environments: An emerging remediation technology [J]. Environmental Health Perspectives, 2016, 116(3): 278–283. DOI: 10.1289/ehp. 10608.

    Article  Google Scholar 

  66. EASTHAM J, MORALD T. Effective nutrient sources for plant growth on bauxite residue:2. Evaluating the response to inorganic fertilizers [J]. Water, Air and Soil Pollution, 2006, 171(1–4): 315–331. DOI: 10.1007/s11270-005-9055–0.

    Article  Google Scholar 

  67. MEECHAM J R, BELL L C. Revegetation of alumina refinery wastes: 2. Glasshouse experiments [J]. Australian Journal of Experimental Agriculture, 1977, 17: 689–696.

    Article  Google Scholar 

  68. PHILLIPS I R, CHEN C. Surface charge characteristics and sorption properties of bauxite-processing residue sand [J]. Australian Journal of Soil Research, 2010, 48(1): 77–87. DOI: https://doi.org/10.1071/SR09056.

    Article  Google Scholar 

  69. CHEN C R, PHILLIPS I R, WEI L L, XU Z H. Behaviour and dynamics of diammonium phosphate in bauxite processing sand in Western Australia–I. NH3 volatilization and residual nitrogen availability [J]. Environmental Science and Pollution Research, 2010, 17(5): 1098–1109. DOI: 10.1007/s11356-009-0268-4.

    Article  Google Scholar 

  70. CHEN C R, PHILLIPS I R, CONDRON L M, GOLORAN J, XU Z H, CHAN K Y. Impacts of biochar on ammonia volatilization from bauxite processing residue sand [J]. Plant and Soil, 2013, 367(1, 2): 301–312. DOI: https://doi.org/10.1007/s11104-012-1468-0.

    Google Scholar 

  71. SANTINI T C, KERR J K, WARREN L A. Microbially-driven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293(1): 131–157. DOI: 10.1016/j.jhazmat.2015.03.024.

    Article  Google Scholar 

  72. BABU A G, REDDY M S. Influence of arbuscular mycorrhizal fungi on the growth and nutrient status of bermudagrass grown in alkaline bauxite processing residue [J]. Environmental Pollution, 2011, 159(1): 25–29. DOI: 1016/j.envpol.2010.09.032.

    Article  Google Scholar 

  73. BUTT K R. Earthworms in soil restoration: lessons learned from United Kingdom case studies of land reclamation [J]. Restoration Ecology, 2008, 16(4): 637–641. DOI: 10.1111/j.1526-100X.2008.00483.x.

    Article  Google Scholar 

  74. CHENG Jie, WONG Ming. Effect of earthworms (Pheretima sp) density on revegetation of lead/zinc metal mine tailings amended with soil [J]. Chinese Journal of Population Resources and Environment, 2008, 6(2): 43–48. DOI: 1080/10042857.2008.10684867.

    Article  Google Scholar 

  75. RUTHERFORD P M, AROCENA J M. Organic amendments and eatrthworm addition improve properties of nonacid mine tailings [J]. Applied Environmental Soil Science, 2012, Article ID 395964. DOI: http://dx.doi.org/10.1155/2012/395964.

    Google Scholar 

  76. HUA T, HAYNES R J, ZHOU Y-F, BOULLEMANT A, CHANDRAWANA I. Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands–adsorption studies [J]. Water Research, 2015, 71(1): 32–41. DOI: 10.1016/j.watres.2014.12.036.

    Article  Google Scholar 

  77. BUCKLEY R, CURTIN T, COURTNEY R. The potential for constructed wetlands to treat alkaline bauxite residue leachate: Laboratory investigations [J]. Environmental Science and Pollution Research, 2016, 23(14): 14115–14122. DOI: 10.1007/s11356-016-6582-8.

    Article  Google Scholar 

  78. HIGGINS D, CURTIN T, COURTNEY R. Effectiveness of a constructed wetland for treating alkaline bauxite residue leachate: A 1-year field study [J]. Environmental Science and Pollution Research, 2017, 24(9): 8516–8524. DOI: https://doi.org/10.1007/s11356-017-8544-1.

    Article  Google Scholar 

  79. HUA T, HAYNES R J, ZHOU Y F. Potential use of two filter media in constructed wetlands for simultaneous removal of As, V and Mo from alkaline wastewater-Batch adsorption and column studies [J]. Journal of Environmental Management, 2018, 2018(1): 190–199. DOI: 10.1016/j.jenvman.2018.04.038.

    Article  Google Scholar 

  80. SANTINI T C, BANNING N C. Alkaline tailings as novel soil forming substrates: Reframing perspectives on mining and refining wastes [J]. Hydrometallurgy, 2016, 164(1): 38–47. DOI: https://doi.org/10.1016/j.hydromet.2016.04.011.

    Article  Google Scholar 

  81. KONG Xiang-feng, TIAN Tao, XUE Sheng-guo, HARTLEY W, HUANG Long, WU Chuan, LI Chu. Development of alkaline electrochemical characteristics demonstrates soil formation in bauxite residue undergoing natural rehabilitation [J]. Land Degradation and Development, 2018, 29(1): 58–67. DOI: 10.1002/ldr.2836.

    Article  Google Scholar 

  82. SANTINI T C, FEY M V. From tailings to soil: Long-term effects of amendments on progress and trajectory of soil formation and in situ remediation in bauxite residue [J]. Journal of Soils and Sediments, 2018, 18(5): 1935–1949. DOI: https://doi.org/10.1007/s11368-017-1867-1.

    Article  Google Scholar 

  83. SANTINI T C, FEY M V, GILKES R J. Experimental simulation of long-term weathering in alkaline bauxite residue tailings [J]. Metals, 2015, 5(3): 1241–1246. DOI: 10.3390/met5031241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-feng Zhou  (周亚凤).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haynes, R., Zhou, Yf. Natural ripening with subsequent additions of gypsum and organic matter is key to successful bauxite residue revegetation. J. Cent. South Univ. 26, 289–303 (2019). https://doi.org/10.1007/s11771-019-4001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4001-2

Key words

关键词

Navigation