Skip to main content
Log in

White Bass (Morone chrysops) Preferentially Retain n-3 PUFA in Ova When Fed Prepared Diets with Varying FA Content

  • Original Article
  • Published:
Lipids

Abstract

We evaluated the fatty acid (FA) composition of broodstock white bass ova fed one of six commercial diets with increasing polyunsaturated FA content (n-6/n-3 ratio; 0.36, 0.39, 0.46, 0.83, 1.07, 1.12) eight weeks prior to sampling. Fatty acid profiles of ova from brooders fed each of the six diets were significantly altered according to canonical discriminant analysis. Ova FA profiles resulting from the 0.39 diet separated those from the 0.36 diet based on lower 18:2n-6 (LNA) and higher 20:1n-9 concentrations from the 0.36 diet. Ova profiles were further separated based on lower concentrations of 22:5n-3 (DPA) from the 0.46 diet, lower concentrations of 20:5n-3 (EPA) in the 1.12 and 0.83 diets, and lower concentrations of 22:6n-3 (DHA) in all other diets relative to the 0.46 diet. Changes in ova FA profile at four and eight weeks were consistent with dietary intake with an approximate 2% increase in any given FA class with increasing time on individual diet. There was no correlation between dietary ARA concentrations (0.7–1.1 mol%), or dietary EPA/ARA ratios (7–15), and the concentrations (1.4–1.7 mol%) or ratios (3.3–4.4) found in the ova by diet. Our results suggest that white bass females have the ability to preferentially incorporate n-3 PUFA, particularly DHA, suggesting mobilization of this FA from other tissues for ova deposition or preferential dietary incorporation of PUFA into ova. These results will add to the limited FA information available in white bass and enable nutritionists to formulate broodstock diets that maximize reproductive potential in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALA:

Alpha-linolenic acid

ARA:

Arachidonic acid

CDF:

Canonical discriminant functions

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

EFA:

Essential fatty acid(s)

EPA:

Eicosapentaenoic acid

FA:

Fatty acid(s)

HKD-SNARC:

Harry K. Dupree Stuttgart National Aquaculture Research Center

LNA:

Linoleic acid

MUFA:

Monounsaturated fatty acids

PIT:

Passive integrated transponder

PUFA:

Polyunsaturated fatty acid(s)

SDA:

Step-wise discriminant

SFA:

Saturated fatty acid(s)

TGC:

Thermal Growth Coefficient

USDA:

US Department of Agriculture

References

  1. Woods LC III, Haller EM, Douglas L, Harrell RM (1999) Variation in growth rate within and among stocks and families of striped bass. N Am J Aqacult 61:8–12

    Article  Google Scholar 

  2. Garber A, Sullivan CV (2006) Selective breeding for the hybrid striped bass (Morone chrysops, Rafinesque M. saxatilis, Walbaum) industry: status and perspectives. Aquacult Res 37:319–338

    Article  Google Scholar 

  3. Mourente G, Odriozola JM (1990) Effect of broodstock diets on lipid classes and their fatty acid composition in eggs of gilthead sea bream (Sparus aurata L.). Fish Physiol Biochem 8:93–101

    Article  CAS  PubMed  Google Scholar 

  4. Harel M, Tandler A, Kissil GW, Applebaum S (1994) The kinetics of nutrient incorporation into body tissues of gilthead seabream, Sparus aurata, females and subsequent effects on egg composition and egg quality. Br J Nutr 72:45–58

    Article  CAS  PubMed  Google Scholar 

  5. Mazorra C, Bruce M, Bell JG, Davie A, Alorend E, Jordan N, Rees J, Papanikos N, Porter M, Bromage N (2003) Dietary lipid enhancement of broodstock reproductive performance and egg and larval quality in Atlantic halibut (Hippoglossus hippoglossus). Aquaculture 227:21–33

    Article  CAS  Google Scholar 

  6. Fernández-Palacios H, Izquierdo MS, Robaina L, Valencia A, Salhi M, Vergara JM (1995) Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead seabream (Sparus aurata L). Aquaculture 132:325–337

    Article  Google Scholar 

  7. Fernández-Palacios H, Izquierdo M, Robaina L, Valencia A, Salhi M, Montero D (1997) The effect of dietary protein and lipid from squid and fish meals on egg quality of broodstock for gilthead seabream (Sparus aurata). Aquaculture 148:233–246

    Article  Google Scholar 

  8. Navas JM, Bruce M, Thrush M, Farndale BM, Bromage N, Zanuy S, Carrillo M, Bell JG, Ramos J (1997) The impact of seasonal alteration in the lipid composition of broodstock diets on egg quality in the European sea bass. J Fish Biol 51:760–773

    Article  CAS  Google Scholar 

  9. Bruce M, Oyen F, Bell G, Asturiano JF, Farndale B, Carrillo M, Zanuy S, Ramos J, Bromage N (1999) Development of broodstock diets for the European sea bass (Dicentrarchus labrax) with special emphasis on the importance of n-3 and n-6 highly unsaturated fatty acid to reproductive performance. Aquaculture 177:85–97

    Article  CAS  Google Scholar 

  10. Sargent JR (1995) Origin and functions of egg lipids: nutritional implications. In: Bromage NR, Roberts JR (eds) Broodstock management and egg and larval quality. Blackwell Scientific Publications, London, pp 353–372

    Google Scholar 

  11. Brooks S, Tyler CR, Sumpter JP (1997) Egg quality in fish: what makes a good egg? Rev Fish Biol Fisher 7:387–416

    Article  Google Scholar 

  12. Wiegand MD (1996) Utilization of yolk fatty acids by goldfish embryos and larvae. Fish Physiol Biochem 15:21–27

    Article  CAS  PubMed  Google Scholar 

  13. Carrillo M, Zanuy S, Prat F, Credá J, Mañanós E, Bromage N, Ramos J, Kah O (1995) Nutritional and photoperiodic effects on hormonal cycles and quality of spawning in sea bass (Dicentrarchus labrax). Neth J Zool 45:204–209

    Article  Google Scholar 

  14. Harrell RM, Woods C III (1995) Comparative fatty acid composition of eggs from domesticated and wild striped bass (Morone saxatilis). Aquaculture 133:225–233

    Article  CAS  Google Scholar 

  15. Izquierdo MS, Socorro J, Arantzamendi L, Hernàdez-Cruz CM (2000) Recent advances in lipid nutrition in fish larvae. Fish Physiol Biochem 22:97–107

    Article  CAS  Google Scholar 

  16. Henderson RJ, Tocher DR (1987) The lipid composition and biochemistry of freshwater fish. Prog Lipid Res 26:281–347

    Article  CAS  PubMed  Google Scholar 

  17. Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  18. Moodie GEE, Loadman NL, Wiegand MD (1989) Influence of egg characteristics on survival, growth and feeding in larval walleye (Stizostedion vitreum). Can J Fish Aquat Sci 46:516–521

    Article  Google Scholar 

  19. Lane RL, Kohler CC (2006) Effects of dietary lipid and fatty acids on white bass reproductive performance, egg hatchability, and overall quality of progeny. N Am J Aquacult 68:141–150

    Article  Google Scholar 

  20. Feller SE (2008) Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. Chem Phys Lipids 153:76–80

    Article  CAS  PubMed  Google Scholar 

  21. Wasall SR, Stillwell W (2008) Docosahexaenoic acid domains: the ultimate non-raft membrane domain. Chem Phys Lipids 153:57–63

    Article  Google Scholar 

  22. Rodriguez CJ, Perez A, Izquierdo MS, Lorenzo A, Fernandez-Palacios H (1994) The effect of n-3 HUFA proportions in diets for gilthead sea bream (Sparus aurata) larval culture. Aquaculture 124:284

    Article  Google Scholar 

  23. Rodríguez C, Cejas JR, Martin MV, Badía P, Samper M, Lorenzo A (1998) Influence of n-3 highly unsaturated fatty acid deficiency on the lipid composition of broodstock gilthead seabream (Sparus aurata L.) and on egg quality. Fish Physiol Biochem 18:177–187

    Article  Google Scholar 

  24. Montero D, Kalinowski T, Obach A, Robaina L, Tort L, Caballero MJ, Izquierdo MS (2003) Vegetable lipid sources for gilthead seabream (Sparus aurata):effects on fish health. Aquaculture 225:353–370

    Article  CAS  Google Scholar 

  25. Lewis HA, Trushenski JT, Lane RL, Kohler CC (2010) Effect of dietary marine lipids on female white bass ova compositions and progeny survival. Fish Physiol Biochem 36:979–992

    Article  CAS  PubMed  Google Scholar 

  26. Lewis HA, Trushenski JT, Lane RL, Kohler CC (2011) Differential incorporation of dietary fatty acids from flax and fish oils into lipid classes of white bass ova. N Am J Aquacult 73:212–220

    Article  Google Scholar 

  27. Bolte MR, Hess BW, Means WJ, Moss GE, Rule DC (2002) Feeding lambs high-oleate or high-linoleate safflower seeds differentially influences carcass fatty acid composition. J Anim Sci 80:609–616

    Article  CAS  PubMed  Google Scholar 

  28. Murrieta CM, Hess BW, Rule DC (2003) Comparison of acidic and alkaline catalysts for preparation of fatty acid methyl esters from ovine muscle with emphasis on conjugated linoleic acid. Meat Sci 65:523–529

    Article  CAS  PubMed  Google Scholar 

  29. Johnson RA, Wichern DW (2002) Applied multivariate statistical data analysis, 5th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  30. Hair JF, Anderson RE, Tatham RL, Black WC (2005) Multivariate data analysis, 6th edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  31. Kohler CC, Sheehan RJ, Myers JJ, Rudacille JB, Llyn ML, Suresh AV (2001) Performance comparison of geographic strains of white bass (Morone chrysops) to produce sunshine bass. Aquaculture 202:351–357

    Article  Google Scholar 

  32. Fuller SA, McEntire M (2011) Variation in body weight and total length among families of fingerling white bass after communal rearing. J Appl Aquaculture 23:250–255

    Article  Google Scholar 

  33. Rawles SD, Thompson KR, Brady YJ, Metts LS, Aksoy M, Gannam AL, Twibell RG, Ostrand S, Webster CD (2011) Effects of feed grade poultry byproduct meal, soybean meal and protein level in the diet on the performance and immune status of pond-grown sunshine bass (Morone chrysops × M. saxatilis). Aquacult Nutr 17:e708–e721

    Article  Google Scholar 

  34. Rawles SD, Green BW, Gaylord TG, Barrows FT, McEntire ME, Freeman DW (2012) Response of sunshine bass (Morone chrysops × M. saxatilis) to digestible protein/dietary lipid density and ration size at summer culture temperatures in the Southern United States. Aquaculture 356–357:80–90

    Article  Google Scholar 

  35. Rawles SD, Fuller SA, Beck BH, Gaylord TG, Barrows FT, McEntire ME (2013) Lysine optimization of a commercial fishmeal-free diet for hybrid striped bass (Morone chrysops × M. saxatilis). Aquaculture 396–399:89–101

    Article  Google Scholar 

  36. Lane RL, Kohler CC (2007) Comparative fatty acid composition of eggs from white bass fed live food or commercial feed. N Am J Aquacult 69:11–15

    Article  Google Scholar 

  37. Bicudo ÁJA, Pinto LFB, Cyrino JEP (2010) Clustering of ingredients with amino acid composition similar to the nutritional requirement of Nile tilapia. Sci Agric 67(5):517–523

    Article  CAS  Google Scholar 

  38. Bell JG, Farndale BM, Bruce MP, Navas JM, Carillo M (1997) Effects of broodstock dietary lipid on fatty acid compositions of eggs from sea bass (Dicentrarchus labrax). Aquaculture 149:107–119

    Article  CAS  Google Scholar 

  39. Almansa E, Pérez MJ, Cejas JR, Badía P, Villamandos JE, Lorenzo A (1999) Influence of broodstock gilthead seabream (Sparus aurata L.) dietary fatty acids on egg quality and egg fatty acid composition throughout the spawning season. Aquaculture 170:323–336

    Article  CAS  Google Scholar 

  40. Vassallo-Agius R, Imaizumi H, Watanabe T, Yamazaki T, Satoh S, Kiron V (2001) The influence of astaxanthin-supplemented dry pellets on spawning of striped jack. Fish Sci 67:260–270

    Article  CAS  Google Scholar 

  41. Sargent JR, Bell JG, Bell MV, Henderson RJ, Tocher DR (1995) Requirement criteria for essential fatty acids. J Appl Ichthyol 11:183–198

    Article  CAS  Google Scholar 

  42. lbeas C, Ceja JR, Fores R, Badia P, Gomez T, Lorenzo A, Hernandez A (1997) Influence of eicosapentaenoic to docosahexaenoic acid ratio (EPA/DHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture 150:91–102

    Article  Google Scholar 

  43. Wu PC, Ting YY, Chen HY (2002) Docosahexaenoic acid is superior to eicosapentaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabancus. J Nutr 132:72–79

    CAS  PubMed  Google Scholar 

  44. Berlinsky DL, Jackson LF, Smith TIJ, Sullivan CV (1995) The annual reproductive cycle of the white bass Morone chrysops. J World Aquac Soc 26:252–260

    Article  Google Scholar 

  45. Tyler CR, Sumpter JP (1996) Oocyte growth and development in teleosts. Rev Fish Biol Fisher 6:287–318

    Article  Google Scholar 

  46. Patiño R, Sullivan CV (2002) Ovarian follicle growth, maturation, and ovulation in teleost fish. Fish Physiol Biochem 26:57–70

    Article  Google Scholar 

  47. Hiramatsu N, Hara A, Matsubara T, Hiramatsu K, Sullivan CV (2003) Oocyte growth in temperate basses: multiple forms of vitellogenin and their receptor. Fish Physiol Biochem 28:301–303

    Article  CAS  Google Scholar 

  48. Lavens P, Lebegue E, Jaunet H, Brunel A, Dhert P, Sorgeloos P (1999) Effect of dietary essential fatty acids and vitamins on egg quality in turbot broodstocks. Aquacult Int 7:225–240

    Article  CAS  Google Scholar 

  49. Webster CD, Lovell RT (1990) Response of striped bass larvae fed brine shrimp from different sources containing different fatty acid compositions. Aquaculture 90:49–61

    Article  CAS  Google Scholar 

  50. Tuncer H, Harrell RM (1992) Essential fatty acid nutrition of larval striped bass (Morone saxatilis) and palmetto bass (M. saxatilis × M. chrysops). Aquaculture 101:105–121

    Article  CAS  Google Scholar 

  51. Nematipour GR, Gatlin M III (1993) Requirement of hybrid striped bass, Morone chrysops × M. saxatilis, for dietary (n-3) highly unsaturated fatty acids. J Nutr 127:744–753

    Google Scholar 

  52. Tuncer H, Harrell RM, Chai T (1993) Beneficial effects of n-3 HUFA-enriched Artemia as food for larval palmetto bass (Morone saxatilis × M. chrysops). Aquaculture 110:341–359

    Article  CAS  Google Scholar 

  53. Kelly AM, Kohler CC (1999) Cold tolerance and fatty acid composition of striped bass, white bass, and their hybrids. N Am J Aquacult 61:278–285

    Article  Google Scholar 

  54. Harel M, Lund E, Gavasso S, Herbert R, Place AR (2000) Modulation of arachidonate and docosahexaenoate in Morone chrysops larval tissues and the effect on growth and survival. Lipids 35:1269–1280

    Article  CAS  PubMed  Google Scholar 

  55. Czesny S, Dabrowski K (1998) The effect of egg fatty acid concentrations on embryo viability in wild and domesticated walleye (Stizostedion vitreum). Aquat Living Resour 11:371–378

    Article  Google Scholar 

  56. Tocher DR, Harvie DG (1988) Fatty acid composition of the major phosphoglycerides from fish neural tissues: (n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiol Biochem 5:229–239

    Article  CAS  PubMed  Google Scholar 

  57. Bell MV, Dick JR (1991) Molecular species composition of the major diacyl glycerophospholipids from muscle, liver, retina, and brain of cod (Gadus morhua). Lipids 26:565–573

    Article  CAS  Google Scholar 

  58. Bell MV, Dick JR, Porter AE (2001) Biosynthesis and tissue deposition of docosahexaenoic acid (22:6n-3) in rainbow trout (Oncorhynchus mykiss). Lipids 36:1153–1159

    Article  CAS  PubMed  Google Scholar 

  59. Blanchard G, Makombu JG, Kestemont P (2008) Influence of different dietary 18:3n-3/18:2n-6 ratio on growth performance, fatty acid composition and hepatic ultrastructure in Eurasian perch, Perca fluviatilis. Aquaculture 284:144–150

    Article  CAS  Google Scholar 

  60. Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499

    Article  CAS  Google Scholar 

  61. Tocher DR, Glencross BD (2015) Lipids and fatty acids. In: Lee C-S, Lim C, Gatlin D III, Webster CD (eds) Dietary nutrients, additives, and fish health, 1st edn. Wiley, New York, pp 47–94

    Chapter  Google Scholar 

  62. Sargent JR, McEvoy LA, Estevez A, Bell JG, Bell MV, Henderson RJ, Tocher DR (1999) Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229

    Article  CAS  Google Scholar 

  63. Kinsella JE, Shimp JL, Mai J, Weihrauch J (1977) Fatty acid content and composition of freshwater finfish. J Am Oil Chem Soc 54(10):424–429

    Article  CAS  PubMed  Google Scholar 

  64. Heyward LD, Smith TIJ, Jenkins WE (1995) Survival and growth of white bass, Morone chrysops, reared at different salinities. J World Aquacult Soc 26:475–479

    Article  Google Scholar 

  65. Rønnestad I, Koven WM, Tandler A, Harel M, Fyhn HJ (1994) Energy metabolism during development of eggs and larvae of gilthead sea bream (Sparus aurata). Mar Biol 120:187–196

    Article  Google Scholar 

  66. Rønnestad I, Koven WM, Tandler A, Harel M, Fyhn HJ (1998) Utilization of yolk fuels in developing eggs and larvae of European sea bass (Dicentrarchus labrax). Aquaculture 162:157–170

    Article  Google Scholar 

  67. Harel M, Place AR (2003) Tissue essential fatty acid composition and competitive response to dietary manipulations in white bass (Morone chrysops), striped bass (M. saxatilis) and hybrid striped bass (M. chrysops × M. saxatilis). Comp Biochem Phys B 135B:83–94

    Article  CAS  Google Scholar 

  68. Izquierdo MS, Fernandez-Palacios H, Tacon AGJ (2001) Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197:25–42

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank USDA/ARS Technicians Dana Shurtleff for care and maintenance of the study animals for the duration of study, and Rebecca Roberts for sample preparation of white bass ova analyzed in this study. This research was supported by funds appropriated for USDA Agricultural Research Service Research Project Number 6028-31630-008-00D. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adam Fuller.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuller, S.A., Rawles, S.D., McEntire, M.E. et al. White Bass (Morone chrysops) Preferentially Retain n-3 PUFA in Ova When Fed Prepared Diets with Varying FA Content. Lipids 52, 823–836 (2017). https://doi.org/10.1007/s11745-017-4281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4281-y

Keywords

Navigation