Skip to main content
Log in

Pectin Penta-Oligogalacturonide Suppresses Intestinal Bile Acids Absorption and Downregulates the FXR-FGF15 Axis in High-Cholesterol Fed Mice

  • Original Article
  • Published:
Lipids

Abstract

Haw pectin penta-oligogalacturonide (HPPS), purified from the hydrolysates of haw pectin, has important role in decreasing hepatic cholesterol accumulation and promoting bile acids (BA) excretion in the feces of mice fed a high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on BA reabsorption in ileum and biosynthesis in liver of mice. Results showed that HPPS increased fecal BA output by approximately 110%, but decreased ileal BA and the total BA pool size by approximately 47 and 36%, respectively, compared to HCD. Studies of molecular mechanism revealed that HPPS significantly decreased the mRNA and protein levels of farnesoid X receptor (FXR) in the small intestine of mice and inactivated the fibroblast growth factor 15 (FXR-FGF15) axis, which increased the mRNA and protein levels of CYP7A1 by approximately 204 and 104%, respectively, compared to HCD. Interestingly, the mRNA and protein levels of apical sodium-dependent bile acid transporter (ASBT) in the small intestine were approximately 128 and 73% higher in HPPS-fed mice than those in HCD-fed mice, respectively. However, no significant difference was detected for ASBT expression between HCD group and BA sequestrant cholestyramine group. These findings indicate that HPPS can suppress intestinal BA reabsorption and promoting hepatic BA biosynthesis. We speculated that HPPS could be ASBT competitive inhibitor rather than BA sequestrant in inhibiting BA reabsorption in ileum and improving cholesterol metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HPPS:

Haw pectin penta-oligogalacturonide

HCD:

High-cholesterol diet

SD:

Standard diet

CHO:

Cholestyramine

TC:

Total cholesterol

ASBT:

Apical sodium-dependent bile acid transporter

IBABP:

Ileal bile acid binding protein

OST:

Organic solute transporter

FXR:

Farnesoid X receptor

FGF:

Fibroblast growth factor

FGFR4:

FGF receptor 4

SHP1:

Short heterodimer partner 1

MRP3:

Multidrug resistance-associated protein-3

CYP7A1:

Cholesterol 7α-hydroxylase 1

References

  1. Smet ED, Mensink RP, Plat J (2012) Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 56:1058–1072

    Article  PubMed  Google Scholar 

  2. He WS, Jia CS, Yang YB, Ma Y, Zhang XM, Feng B, Jin J (2011) Cholesterol-lowering effects of plant steryl and stanyl laurate by oral administration in mice. J Agric Food Chem 59:5093–5099

    Article  CAS  PubMed  Google Scholar 

  3. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet 376:1670–1681

    Article  CAS  PubMed  Google Scholar 

  4. Chen W, Guo J-X, Chang P (2012) The effect of taurine on cholesterol metabolism. Mol Nutr Food Res 56:681–690

    Article  CAS  PubMed  Google Scholar 

  5. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483

    Article  CAS  PubMed  Google Scholar 

  6. Dawson PA, Lan T, Rao A (2009) Bile acid transporters. J Lipid Res 50:2340–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N (2005) OSTα-OSTβ: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42:1270–1279

    Article  CAS  PubMed  Google Scholar 

  8. Oelkers P, Dawson PA (1995) Cloning and chromosomal localization of the human ileal lipid-binding protein. Biochim Biophys Acta 1257:199–202

    Article  PubMed  Google Scholar 

  9. Pols TWH, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54:1263–1272

    Article  CAS  PubMed  Google Scholar 

  10. Sjövall J (2004) Fifty years with bile acids and steroids in health and disease. Lipids 39:703–722

    PubMed  Google Scholar 

  11. Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR. Mol Cell 3:543–553

    Article  CAS  PubMed  Google Scholar 

  12. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by nuclear receptor LXR alpha. Nature 383:728–731

    Article  CAS  PubMed  Google Scholar 

  13. Dawson PA, Hubbert ML, Rao A (2010) Getting the mOST from OST: role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. BBA-Mol Cell Biol L 1801:994–1004

    Article  CAS  Google Scholar 

  14. Chau CF, Yang P, Yu CM, Yen GC (2008) Investigation on the lipid- and cholesterol-lowering abilities of biocellulose. J Agric Food Chem 56:2291–2295

    Article  CAS  PubMed  Google Scholar 

  15. Li T, Li S, Du L, Wang N, Guo M, Zhang J, Yan F, Zhang H (2010) Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet. Food Chem 121:1010–1013

    Article  CAS  Google Scholar 

  16. Marounek M, Volek Z, Skřivanová E, Tůma J (2010) Effects of amidated pectin alone and combined with cholestyramine on cholesterol homeostasis in rats fed a cholesterol-containing diet. Carbohyd Polym 80:989–992

    Article  CAS  Google Scholar 

  17. Denman LJ, Morris GA (2015) An experimental design approach to the chemical characterisation of pectin polysaccharides extracted from Cucumis melo Inodorus. Carbohyd Polym 117:364–369

    Article  CAS  Google Scholar 

  18. Wang N, Zhang CY, Qi YD, Li TP (2007) Extraction and food chemical characterizations of haw pectin. Sci Technol Food Ind 28:87–92 (in China)

    Google Scholar 

  19. Zhu RG, Li TP, Dong YP, Liu YH, Li SH, Chen G, Zhao ZS, Jia YF (2013) Pectin pentasaccharide from hawthorn (Crataegus pinnatifida Bunge. Var. major) ameliorates disorders of cholesterol metabolism in high-fat diet fed mice. Food Res Int 54:262–268

    Article  CAS  Google Scholar 

  20. Li SH, Li TP, Jia YF, Zhu RG, Wang N, Jin S, Guo M (2011) Fractionation and structural characterization of haw pectin oligosaccharides. Eur Food Res Technol 233:731–734

    Article  CAS  Google Scholar 

  21. Hoang MH, Houng SJ, Jun HJ, Lee JH, Choi JW, Kim SH, Kim YR, Lee SJ (2011) Barley intake induces bile acid excretion by reduced expression of intestinal ASBT and NPC1L1 in C57BL/6J mice. J Agric Food Chem 59:6798–6805

    Article  CAS  PubMed  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  23. Dawson PA, Hubbert M, Haywood J, Craddock AL, Zerangue N, Christian WV, Ballatori N (2005) The heteromeric organic solute transporter α-β, Ostα-Ostβ, is an ileal basolateral bile acid transporter. J Biol Chem 280:6960–6968

    Article  CAS  PubMed  Google Scholar 

  24. Chiang JYL (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40:539–551

    Article  CAS  PubMed  Google Scholar 

  25. Ramirez MI, Carauglu D, Haro D, Barillas C, Bashirzadeh R, Gil G (1994) Cholesterol and bile acids regulate cholesterol 7 alpha-hydroxylase expression at the transcriptional level in culture and in transgenic mice. Mol Cell Biol 14:2809–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nagano M, Kuroki S, Mizuta A, Furukawa M, Noshiro M, Chijiiwa K, Tanaka M (2004) Regulation of bile acid synthesis under reconstructed enterohepatic circulation in rats. Steroids 69:701–709

    Article  CAS  PubMed  Google Scholar 

  27. Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL (2012) Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56:1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A (2014) Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep 7:12–18

    Article  CAS  PubMed  Google Scholar 

  29. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225

    Article  CAS  PubMed  Google Scholar 

  30. Lan T, Rao A, Haywood J, Kock ND, Dawson PA (2012) Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism. J Hepatol 57:359–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dawson PA, Haywood J, Craddock AL, Wilson M, Tietjen M, Kluckman K, Maeda N, Parks JS (2003) Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 278:33920–33927

    Article  CAS  PubMed  Google Scholar 

  32. Shneider BJ (2001) Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 32:407–417

    Article  CAS  PubMed  Google Scholar 

  33. Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA (2006) Regulation of the mouse organic solute transporter alpha–beta, Ostalpha–Ostbeta, by bile acids. Am J physiol-Gastr L 290:912–922

    Google Scholar 

  34. Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F (2003) Enterohepatic Circulation of Bile Salts in Farnesoid X Receptor-deficient Mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 278:41930–41937

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Natural Science Foundation of China (31301424/C200402); Foundation of Liaoning educational Committee (L2013008); The Doctoral Scientific Research Foundation of Liaoning University; Science and Technology Planning Project of Shenyang City, China (F16-205-1-52, F16-219-6-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rugang Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Hou, Y., Sun, Y. et al. Pectin Penta-Oligogalacturonide Suppresses Intestinal Bile Acids Absorption and Downregulates the FXR-FGF15 Axis in High-Cholesterol Fed Mice. Lipids 52, 489–498 (2017). https://doi.org/10.1007/s11745-017-4258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4258-x

Keywords

Navigation