Skip to main content
Log in

Transcriptomic Analysis of THP-1 Macrophages Exposed to Lipoprotein Hydrolysis Products Generated by Lipoprotein Lipase

  • Original Article
  • Published:
Lipids

Abstract

Macrophage lipoprotein lipase (LPL) induces lipid accumulation and promotes atherosclerosis. However, the effects of lipoprotein hydrolysis products generated by LPL on macrophage-derived foam cell formation are not clearly understood. Thus, we analyzed the transcriptomic response to hydrolysis products via microarray analyses on RNA isolated from human THP-1 macrophages incubated with total lipoprotein hydrolysis products generated by LPL. The expression of 183 transcripts was significantly upregulated and 133 transcripts were significantly downregulated. Bioinformatics analyses revealed that there was a significant over-representation of genes involved in cell cycling, stress response, type I interferon signaling, cellular metal ion homeostasis, sterol metabolism, and nuclease activity. Interestingly, transcripts for 63 small nucleolar RNA were significantly upregulated. We verified the microarray data by quantitative real-time PCR and found that the expression of SNORA56, as well as the expression of genes associated with the cell cycle (PCNA and DKC1 variant 3), stress response (ATF3), type I interferon signaling (IFITM1), and lipid metabolism (CD36 and PLIN2) were significantly affected by LPL hydrolysis products. To determine if the free fatty acid (FFA) component of total lipoprotein hydrolysis products is sufficient to alter the expression of these genes, THP-1 macrophages were also incubated with the total FFA or individual classes of the FFA component. The gene regulation by the FFA component did not mimic that of the hydrolysis products, suggesting that the regulation of gene expression in THP-1 macrophages depends on the specific combination and concentration of lipid species present in the hydrolysis products, and not solely on FFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A/A:

Antibiotic/antimycotic

ATF3:

Activation transcription factor 3

CD36:

Cluster of differentiation 36

DMEM:

Dulbecco’s Modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

FAF-BSA:

Fatty acid free-bovine serum albumin

FFA:

Free fatty acid

IFITM1:

Interferon induced transmembrane protein 1

LPL:

Lipoprotein lipase

MUFA:

Monounsaturated fatty acid

PCNA:

Proliferating cell nuclear antigen

PMA:

Phorbol 12-myristate 13-acetate

PUFA:

Polyunsaturated fatty acid

RPMI:

Roswell Park Memorial Institute

SFA:

Saturated fatty acid

snoRNA:

Small nucleolar RNA

TAG:

Triacylglycerol

THL:

Tetrahydrolipstatin

References

  1. Goldberg IJ, Le NA, Ginsberg HN, Krauss RM, Lindgren FT (1988) Lipoprotein metabolism during acute inhibition of lipoprotein lipase in the cynomolgus monkey. J Clin Invest 81:561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dugi KA, Dichek HL, Santamarina-Fojo S (1995) Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity. J Biol Chem 270:25396–25401

    Article  CAS  PubMed  Google Scholar 

  3. Cheng CF, Oosta GM, Bensadoun A, Rosenberg RD (1981) Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem 256:12893–12898

    CAS  PubMed  Google Scholar 

  4. Shimada K, Gill PJ, Silbert JE, Douglas WH, Fanburg BL (1981) Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells. J Clin Invest 68:995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rumsey SC, Obunike JC, Arad Y, Deckelbaum RJ, Goldberg IJ (1992) Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages. J Clin Invest 90:1504–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mulder M, Lombardi P, Jansen H, van Berkel TJ, Frants RR, Havekes LM (1992) Heparan sulphate proteoglycans are involved in the lipoprotein lipase-mediated enhancement of the cellular binding of very low density and low density lipoproteins. Biochem Biophys Res Commun 185:582–587

    Article  CAS  PubMed  Google Scholar 

  8. Camps L, Reina M, Llobera M, Vilaró S, Olivecrona T (1990) Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol 258:C673–C681

    CAS  PubMed  Google Scholar 

  9. Camps L, Reina M, Llobera M, Bengtsson-Olivecrona G, Olivecrona T, Vilaró S (1991) Lipoprotein lipase in lungs, spleen, and liver: synthesis and distribution. J Lipid Res 32:1877–1888

    CAS  PubMed  Google Scholar 

  10. O’Brien KD, Gordon D, Deeb S, Ferguson M, Chait A (1992) Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronory atherosclerotic plaques. J Clin Invest 89:1544–1550

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brown RJ, Rader DJ (2007) Lipases as modulators of atherosclerosis in murine models. Curr Drug Targets 8:1307–1319

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi M, Yagyu H, Tazoe F, Nagashima S, Ohshiro T, Okada K, Osuga J, Goldberg IJ, Ishibashi S (2013) Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity. J Lipid Res 54:1124–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson K, Fry GL, Chappell DA, Sigmund CD, Medh JD (2001) Macrophage-specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein E knockout mice but not in C57BL/6 mice. Arterioscler Thromb Vasc Biol 21:1809–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser TR, Rutledge JC (2010) Fatty acids from very low-density lipoprotein lipolysis products induce lipid droplet accumulation in human monocytes. J Immunol 184:3927–3936

    Article  Google Scholar 

  15. Essaji Y, Yang Y, Albert CJ, Ford DA, Brown RJ (2013) Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways. Lipids 48:769–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Thyagarajan N, Coady BM, Brown RJ (2014) Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase. Biochem Biophys Res Commun 451:632–636

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC (2009) Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res 50:204–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lehner R, Verger R (1997) Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry 36:1861–1868

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Kuwano T, Lagor WR, Albert CJ, Brenton S, Rader DJ, Ford DA, Brown RJ (2014) Lipidomic analyses of female mice lacking hepatic lipase and endothelial lipase indicate selective modulation of plasma lipid species. Lipids 49:505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Griffon N, Budreck EC, Long CJ, Broedl UC, Marchadier DH, Glick JM, Rader DJ (2006) Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras. J Lipid Res 47:1803–1811

    Article  CAS  PubMed  Google Scholar 

  21. Li XA, Hatanaka K, Ishibashi-Ueda H, Yutani C, Yamamoto A (1995) Characterization of serum amyloid P component from human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol 15:252–257

    Article  CAS  PubMed  Google Scholar 

  22. Skottova N, Savonen R, Lookene A, Hultin M, Olivecrona G (1995) Lipoprotein lipase enhances removal of chylomicrons and chylomicron remnants by the perfused rat liver. J Lipid Res 36:1334–1344

    CAS  PubMed  Google Scholar 

  23. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  24. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  25. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  26. Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing. Bioinformatics 26:2363–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  28. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W (2005) BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21:3439–3440

    Article  CAS  PubMed  Google Scholar 

  29. Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D, Siani-Rose MA (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 31:82–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9:S4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lestrade L, Weber MJ (2006) snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 34:D158–D162

    Article  CAS  PubMed  Google Scholar 

  34. Gordon D, Reidy MA, Benditt EP, Schwartz SM (1990) Cell proliferation in human coronary arteries. Proc Natl Acad Sci USA 87:4600–4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Erbay E, Babaev VR, Mayers JR, Makowski L, Charles KN, Snitow ME, Fazio S, Wiest MM, Watkins SM, Linton MF, Hotamisligil GS (2009) Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat Med 15:1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Korman BD, Huang CC, Skamra C, Wu P, Koessler R, Yao D, Huang QQ, Pearce W, Sutton-Tyrell K, Kondos G, Edmundowicz D, Pope R, Ramsey-Goldman R (2014) Inflammatory expression profiles in monocyte-to-macrophage differentiation in patients with systemic lupus erythematosus and relationship with atherosclerosis. Arthritis Res Ther 16:R147

    Article  PubMed  PubMed Central  Google Scholar 

  37. Song Y, Zhang LJ, Li H, Gu Y, Li FF, Jiang LN, Liu F, Ye J, Li Q (2013) Polyunsaturated fatty acid relatively decreases cholesterol content in THP-1 macrophage-derived foam cell: partly correlates with expression profile of CIDE and PAT members. Lipids Health Dis 2:111

    Article  Google Scholar 

  38. Kruth HS (1985) Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis 57:337–341

    Article  CAS  PubMed  Google Scholar 

  39. Giordano M, Danova M, Pellicciari C, Wilson GD, Mazzini G, Conti AM, Franchini G, Riccardi A, Romanini MG (1991) Proliferating cell nuclear antigen (PCNA)/cyclin expression during the cell cycle in normal and leukemic cells. Leuk Res 15:965–974

    Article  CAS  PubMed  Google Scholar 

  40. Artwohl M, Roden M, Waldhäusl W, Freudenthaler A, Baumgartner-Parzer SM (2004) Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J 18:146–148

    CAS  PubMed  Google Scholar 

  41. Chen BP, Wolfgang CD, Hai T (1996) Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16:1157–1168

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aung HH, Lame MW, Gohil K, An CI, Wilson DW, Rutledge JC (2013) Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler Thromb Vasc Biol 33:2088–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krogmann A, Staiger K, Haas C, Gommer N, Peter A, Heni M, Machicao F, Häring HU, Staiger H (2011) Inflammatory response of human coronary artery endothelial cells to saturated long-chain fatty acids. Microvasc Res 81:52–59

    Article  CAS  PubMed  Google Scholar 

  44. Suganami T, Yuan X, Shimoda Y, Uchio-Yamada K, Nakagawa N, Shirakawa I, Usami T, Tsukahara T, Nakayama K, Miyamoto Y, Yasuda K, Matsuda J, Kamei Y, Kitajima S, Ogawa Y (2009) Activating transcription factor 3 constitutes a negative feedback mechanism that attenuates saturated fatty acid/toll-like receptor 4 signaling and macrophage activation in obese adipose tissue. Circ Res 105:25–32

    Article  CAS  PubMed  Google Scholar 

  45. Choi HJ, Lui A, Ogony J, Jan R, Sims PJ, Lewis-Wambi J (2015) Targeting interferon response genes sensitizes aromatase inhibitor resistant breast cancer cells to estrogen-induced cell death. Breast Cancer Res 17:6

    Article  PubMed  PubMed Central  Google Scholar 

  46. Witztum JL (2005) You are right too! J Clin Invest 115:2072–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vallvé JC, Uliaque K, Girona J, Cabré A, Ribalta J, Heras M, Masana L (2002) Unsaturated fatty acids and their oxidation products stimulate CD36 gene expression in human macrophages. Atherosclerosis 164:45–56

    Article  PubMed  Google Scholar 

  48. Rider OJ, Holloway CJ, Emmanuel Y, Bloch E, Clarke K, Neubauer S (2012) Increasing plasma free fatty acids in healthy subjects induces aortic distensibility changes seen in obesity. Circ Cardiovasc Imaging 5:367–375

    Article  PubMed  Google Scholar 

  49. Varela LM, López S, Ortega-Gómez A, Bermúdez B, Buers I, Robenek H, Muriana FJ, Abia R (2015) Postprandial triglyceride-rich lipoproteins regulate perilipin-2 and perilipin-3 lipid-droplet-associated proteins in macrophages. J Nutr Biochem 26:327–336

    Article  CAS  PubMed  Google Scholar 

  50. Haffar T, Juarez M, Bousette N (2014) Palmitate mediated repression of PPAR and SERCA2A expression is associated with cytokine activation in primary cardiomyocytes. Can J Cardiol 30:S339–S340

    Article  Google Scholar 

  51. Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148

    Article  CAS  PubMed  Google Scholar 

  52. Dieci G, Preti M, Montanini B (2009) Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94:83–88

    Article  CAS  PubMed  Google Scholar 

  53. Liu B, Liang XH, Piekna-Przybylska D, Liu Q, Fournier MJ (2008) Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biol 5:249–254

    Article  CAS  PubMed  Google Scholar 

  54. Cohen E, Avrahami D, Frid K, Canello T, Levy Lahad E, Zeligson S, Perlberg S, Chapman J, Cohen OS, Kahana E, Lavon I, Gabizon R (2013) Snord 3A: a molecular marker and modulator of prion disease progression. PLoS One 8:e54433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brandis KA, Gale S, Jinn S, Langmade SJ, Dudley-Rucker N, Jiang H, Sidhu R, Ren A, Goldberg A, Schaffer JE, Ory DS (2013) Box C/D small nucleolar RNA (snoRNA) U60 regulates intracellular cholesterol trafficking. J Biol Chem 288:35703–35713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ganot P, Bortolin ML, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809

    Article  CAS  PubMed  Google Scholar 

  57. Kiss AM, Jády BE, Bertrand E, Kiss T (2004) Human box H/ACA pseudouridylation guide RNA machinery. Mol Cell Biol 24:5797–5807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ofengand J, Bakin A (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 266:246–268

    Article  CAS  PubMed  Google Scholar 

  59. Turano M, Angrisani A, Di Maio N, Furia M (2013) Intron retention: a human DKC1 gene common splicing event. Biochem Cell Biol 91:506–512

    Article  CAS  PubMed  Google Scholar 

  60. Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, Behlke MA, Ory DS, Schaffer JE (2011) Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab 14:33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (R.J.B.). We wish to thank Craig Ayre, Nikitha Pallegar, and Viswanathan Swaminathan for their technical assistance. We also wish to thank S. Layer for support, and Alexander Brannan for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Brown.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 377 kb)

Supplementary material 2 (XLSX 41 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thyagarajan, N., Marshall, J.D., Pickett, A.T. et al. Transcriptomic Analysis of THP-1 Macrophages Exposed to Lipoprotein Hydrolysis Products Generated by Lipoprotein Lipase. Lipids 52, 189–205 (2017). https://doi.org/10.1007/s11745-017-4238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4238-1

Keywords

Navigation