Skip to main content
Log in

New Classification of Macrophages in Plaques: a Revolution

  • Vascular Biology (J. Hamilton, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose

Macrophages play vital roles in the development of atherosclerosis in responding to lipid accumulation and inflammation. Macrophages were classified as inflammatory (M1) and alternatively activated (M2) macrophage types based on results of in vitro experiments. On the other hand, the composition of macrophages in vivo is more complex and remains unresolved. This review summarizes the transcriptional variations of macrophages in atherosclerosis plaques that were discovered by single-cell RNA sequencing (scRNA-seq) to better understand their contribution to atherosclerosis.

Recent Findings

ScRNA-seq provides a more detailed transcriptional landscape of macrophages in atherosclerosis, which challenges the traditional view. By mining the data of GSE97310, we discovered the transcriptional variations of macrophages in LDLR−/− mice that were fed with high-fat diet (HFD) for 11 and 20 weeks. Cells were represented in a two-dimensional tSNE plane and clusters were identified and annotated via Seurat and SingleR respectively, which were R toolkits for single-cell genomics. The results showed that in healthy conditions, Trem2hi (high expression of triggering receptors expressed on myeloid cells 2)-positive, inflammatory, and resident-like macrophages make up 68%, 18%, and 6% of total macrophages respectively. When mice were fed with HFD for 11 weeks, Trem2hi, monocytes, and monocyte-derived dendritic cells take possession of 40%, 18%, and 17% of total macrophages respectively. After 20 weeks of HFD feeding, Trem2hi, inflammatory, and resident-like macrophages occupied 12%, 37%, and 35% of total macrophages respectively.

Summary

The phenotypes of macrophages are very different from the previous studies. In general, Trem2hi macrophages are the most abundant population in healthy mice, while the proportion of monocytes increases after 11 weeks of HFD. Most importantly, inflammatory and resident-like macrophages make up 70% of the macrophage populations after 20 weeks of HFD. These strongly indicate that inflammatory and resident-like macrophages promote the progression of atherosclerosis plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ramesh A, Kumar S, Nandi D, Kulkarni A. CSF1R-and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater. 2019;31:e1904364.

    PubMed  Google Scholar 

  4. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    PubMed  PubMed Central  Google Scholar 

  5. Erbel C, Akhavanpoor M, Okuyucu D, Wangler S, Dietz A, Zhao L, et al. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J Immunol. 2014;193:4344–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell. 2017;170:649–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. 2019;505:eaau2291.

    Google Scholar 

  8. Liu C, Li P, Li H, Wang S, Ding L, Wang H, et al. TREM2 regulates obesity-induced insulin resistance via adipose tissue remodeling in mice of high-fat feeding. J Transl Med. 2019;17:300.

    PubMed  PubMed Central  Google Scholar 

  9. • Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell. 2019;178:686–698.e14 The significant role of Trem2 in lipid uptake and storage in macrophages.

    PubMed  PubMed Central  Google Scholar 

  10. Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell. 2019;75:644–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173:1073–81.

    CAS  PubMed  Google Scholar 

  12. Brosseau C, Colas L, Magnan A, Brouard S. CD9 Tetraspanin: a new pathway for the regulation of inflammation? Front Immunol. 2018;9:2316.

    PubMed  PubMed Central  Google Scholar 

  13. Reyes R, Cardeñes B, Machado-Pineda Y, Cabañas C. Tetraspanin CD9: a key regulator of cell adhesion in the immune system. Front Immunol. 2018;9:863.

    PubMed  PubMed Central  Google Scholar 

  14. Shen X, Zhao Y, Xu S, Wang L, Cao H, Cao Y, et al. Cathepsin L induced PC-12 cell apoptosis via activation of B-Myb and regulation of cell cycle proteins. Acta Pharmacol Sin. 2019;40:1394–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Shen X, Zhu Y, Wang A, Xiong Y, Wang L, et al. Cathepsin L-mediated resistance of paclitaxel and cisplatin is mediated by distinct regulatory mechanisms. J Exp Clin Cancer Res. 2019;38:333.

    PubMed  PubMed Central  Google Scholar 

  16. Li W, Kornmark L, Jonasson L, Forssell C, Yuan X-M. Cathepsin L is significantly associated with apoptosis and plaque destabilization in human atherosclerosis. Atherosclerosis. 2008;202:92–102.

    PubMed  Google Scholar 

  17. Borthwick LA, Mann DA. Osteopontin and HMGB1: novel regulators of HSC activation. Nat Rev Gastroenterol Hepatol. 2016;13:320–2.

    CAS  PubMed  Google Scholar 

  18. Wasgewatte Wijesinghe DK, Mackie EJ, Pagel CN. Normal inflammation and regeneration of muscle following injury require osteopontin from both muscle and non-muscle cells. Skeletal Muscle. 2019;9:6.

    PubMed  PubMed Central  Google Scholar 

  19. Capote J, Kramerova I, Martinez L, Vetrone S, Barton ER, Sweeney HL, et al. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J Cell Biol. 2016;21:275–88.

    Google Scholar 

  20. Shirakawa K, Endo J, Kataoka M, Katsumata Y, Yoshida N, Yamamoto T, et al. IL-10-STAT3-Galectin-3 axis is essential for osteopontin-producing reparative macrophage polarization after myocardial infarction. Circulation. 2018;138:2021–35.

    CAS  PubMed  Google Scholar 

  21. Johns RA, Takimoto E, Meuchel LW, Elsaigh E, Zhang A, Heller NM, et al. Hypoxia-inducible factor 1α is a critical downstream mediator for hypoxia-induced mitogenic factor (FIZZ1/RELMα)-induced pulmonary hypertension significance. Arterioscler Thromb Vasc Biol. 2015;36:134–44.

    PubMed  PubMed Central  Google Scholar 

  22. Carleton, M. M., Sefton, M V Injectable and degradable methacrylic acid hydrogel alters macrophage response in skeletal muscle Biomaterials 2019; 223: 119477.

  23. Deng R, Chen X, Zhang Y, Bian F, Gao N, Hu J, et al. Short ragweed pollen promotes M2 macrophage polarization via TSLP/TSLPR/OX40L signaling in allergic inflammation. Mucosal Immunol. 2019;12:1141–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ibrahim HR, Hamasaki K, Miyata T. Novel peptide motifs from lysozyme suppress pro-inflammatory cytokines in macrophages by antagonizing toll-like receptor and LPS-scavenging action. Eur J Pharm Sci. 2017;107:240–8.

    CAS  PubMed  Google Scholar 

  25. Kawai Y, Mickiewicz K, Errington J. Lysozyme counteracts β-lactam antibiotics by promoting the emergence of L-form bacteria. Cell. 2018;172:1038–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhan S, Li J, Wang T, Ge W. Quantitative proteomics analysis of sporadic medullary thyroid cancer reveals FN1 as a potential novel candidate prognostic biomarker. Oncologist. 2018;23:1415–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. •• Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis novelty and significance. Circulation Res. 2018;122:1661–74 New macrophages phenotypes discovered by Sc-RNA seq experiment. And the original data of GSE97310 came from the same team.

    CAS  PubMed  Google Scholar 

  28. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic cx3cr1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159–68.

    CAS  PubMed  Google Scholar 

  29. Beckers CML, Simpson KR, Griffin KJ, Brown JM, Cheah LT, Smith KA, et al. Cre/lox studies identify resident macrophages as the major source of circulating coagulation factor xiii-a. Arterioscler Thromb Vasc Biol. 2017;37:1494–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Y, Zou W, Du J, Zhao Y. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J Cell Physiol. 2018;233:6425–39.

    CAS  PubMed  Google Scholar 

  31. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Honold L, Nahrendorf M. Resident and monocyte-derived macrophages in cardiovascular disease. Circ Res. 2018;122:113–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Asano K, Takahashi N, Ushiki M, Monya M, Aihara F, Kuboki E, et al. Intestinal CD169+ macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nat Commun. 2015;6:7802.

    CAS  PubMed  Google Scholar 

  34. Poh S, Chelvam V, Ayala-López W, Putt KS, Low PS. Selective liposome targeting of folate receptor positive immune cells in inflammatory diseases. Nanomedicine. 2018;14:1033–43.

    CAS  PubMed  Google Scholar 

  35. Mohammadi M, Li Y, Abebe DG, Xie Y, Kandil R, Kraus T, et al. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J Control Release. 2016;244:269–79.

    CAS  PubMed  Google Scholar 

  36. Jager NA, Westra J, Golestani R, van Dam GM, Low PS, Tio RA, et al. Folate receptor-imaging using 99mTc-folate to explore distribution of polarized macrophage populations in human atherosclerotic plaque. J Nucl Med. 2014;55:1945–51.

    CAS  PubMed  Google Scholar 

  37. Erbel C, Wolf A, Lasitschka F, Linden F, Domschke G, Akhavanpoor M, et al. Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability. Int J Cardiol. 2015;186:219–25.

    PubMed  Google Scholar 

  38. Bakogiannis C, Sachse M, Stamatelopoulos K, Stellos K. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine. 2017;122:154157. https://doi.org/10.1016/j.cyto.2017.09.013.

    Article  CAS  PubMed  Google Scholar 

  39. Barrett CW, Reddy VK, Short SP, Motley AK, Lintel MK, Bradley AM, et al. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J Clin Investig. 2015;125:2646–60.

    PubMed  PubMed Central  Google Scholar 

  40. Tatura M, Schmidt H, Haijat M, Stark M, Rinke A, Diels R, et al. Placenta-specific 8 is overexpressed and regulates cell proliferation in low-grade human pancreatic neuroendocrine tumors. Neuroendocrinology. 2019. https://doi.org/10.1159/000500541.

  41. Segawa S, Kondo Y, Nakai Y, Iizuka A, Kaneko S, Yokosawa M, et al. Placenta specific 8 suppresses IL-18 production through regulation of autophagy and is associated with adult still disease. J Immunol. 2018;201:3534–45.

    CAS  PubMed  Google Scholar 

  42. Lopez-Ramirez MA, Fonseca G, Zeineddine HA, Girard R, Moore T, Pham A, et al. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med. 2017;214:3331–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu A, Pallero MA, Lei W, Hong H, Yang Y, Suto MJ, et al. Inhibition of transforming growth factor-β activation diminishes tumor progression and osteolytic bone disease in mouse models of multiple myeloma. Am J Pathol. 2016;186:678–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Maimaitiyiming H, Clemons K, Zhou Q, Norman H, Wang S. Thrombospondin1 deficiency attenuates obesity-associated microvascular complications in ApoE−/− mice. PLoS One. 2015;10:e0121403.

    PubMed  PubMed Central  Google Scholar 

  45. Simovic Markovic B, Nikolic A, Gazdic M, Bojic S, Vucicevic L, Kosic M, et al. Galectin-3 plays an important pro-inflammatory role in the induction phase of acute colitis by promoting activation of NLRP3 inflammasome and production of IL-1β in macrophages. J Crohn’s Colitis. 2016;10:593–606.

    Google Scholar 

  46. Erriah M, Pabreja K, Fricker M, Baines KJ, Donnelly LE, Bylund J, et al. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir Res. 2019;20:1.

    PubMed  PubMed Central  Google Scholar 

  47. Lu Y, Zhang M, Zhao P, Jia M, Liu B, Jia Q, et al. Modified citrus pectin inhibits galectin-3 function to reduce atherosclerotic lesions in apoE-deficient mice. Mol Med Rep. 2017;16:647–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Abe H, Takeda N, Isagawa T, Semba H, Nishimura S, Morioka MS, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nat Commun. 2019;10:2824.

    PubMed  PubMed Central  Google Scholar 

  49. Shrivastava R, Singh V, Asif M, Negi MPS, Bhadauria S. Oncostatin M upregulates HIF-1α in breast tumor associated macrophages independent of intracellular oxygen concentration. Life Sci. 2018;194:59–66.

    CAS  PubMed  Google Scholar 

  50. Matsuda M, Tsurusaki S, Miyata N, Saijou E, Okochi H, Miyajima A, et al. Oncostatin M causes liver fibrosis by regulating cooperation between hepatic stellate cells and macrophages in mice. Hepatology. 2017;67:296–312.

    PubMed  Google Scholar 

  51. Komori T, Tanaka M, Furuta H, Akamizu T, Miyajima A, Morikawa Y. Oncostatin M is a potential agent for the treatment of obesity and related metabolic disorders: a study in mice. Diabetologia. 2015;58:1868–76.

    CAS  PubMed  Google Scholar 

  52. Menezes S, Melandri D, Anselmi G, Perchet T, Loschko J, Dubrot J, et al. The heterogeneity of Ly6Chi monocytes controls their differentiation into iNOS+ macrophages or monocyte-derived dendritic cells. Immunity. 2016;45:1205–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan J, Jiang Y, Lu J, Wu J, Zhang M. Inhibiting of proliferation, migration, and invasion in lung cancer induced by silencing interferon-induced transmembrane protein 1 (IFITM1). Biomed Res Int. 2019;2019:9085435.

    PubMed  PubMed Central  Google Scholar 

  54. Spence JS, He R, Hoffmann H-H, Das T, Thinon E, Rice CM, et al. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol. 2019;15:259–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cybulsky MI, Cheong C, Robbins CS. Macrophages and dendritic cells. Circulation Res. 2016;118:637–52.

    CAS  PubMed  Google Scholar 

  56. Haka AS, Singh RK, Grosheva I, Hoffner H, Capetillo-Zarate E, Chin HF, et al. Monocyte-derived dendritic cells upregulate extracellular catabolism of aggregated low-density lipoprotein on maturation, leading to foam cell formation significance. Arterioscler Thromb Vasc Biol. 2015;35:2092–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li W, Sultana N, Siraj N, Ward LJ, Pawlik M, Levy E, et al. Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis. J Cell Mol Med. 2016;20:1664–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Zhou P, Chen H, Chen Q, Kuang X, Lu C, et al. Inflammation-restricted anti-inflammatory activities of a N -acylethanolamine acid amidase (NAAA) inhibitor F215. Pharmacol Res. 2018;132:7–14.

    CAS  PubMed  Google Scholar 

  59. Alhouayek M, Bottemanne P, Makriyannis A, Muccioli GG. N-Acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2017;186:474–84.

    Google Scholar 

  60. Mancino A, Termanini A, Barozzi I, Ghisletti S, Ostuni R, Prosperini E, et al. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev. 2015;29:394–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Karki R, Lee E, Place D, Samir P, Mavuluri J, Sharma BR, et al. IRF8 regulates transcription of Naip s for NLRC4 inflammasome activation. Cell. 2018;173:920–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Van Audenhove I, Debeuf N, Boucherie C, Gettemans J. Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. Biochimica et Biophysica Acta (BBA) -Molecular Cell Research. 2015;1853:940–52.

    Google Scholar 

  63. Cao H, Maeda K, Gorgun CZ, Kim HJ, Park SY, Shulman GI, et al. Regulation of metabolic responses by adipocyte/macrophage fatty acid–binding proteins in leptin-deficient mice. Diabetes. 2006;55:1915–22.

    CAS  PubMed  Google Scholar 

  64. Furuhashi M, Ogura M, Matsumoto M, Yuda S, Muranaka A, Kawamukai M, et al. Serum FABP5 concentration is a potential biomarker for residual risk of atherosclerosis in relation to cholesterol efflux from macrophages. Sci Rep. 2017;7:217.

    PubMed  PubMed Central  Google Scholar 

  65. Moore SM, Holt VV, Malpass LR, Hines IN, Wheeler MD. Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages. Mol Immunol. 2015;67:265–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rao DM, Phan DT, Choo MJ, Owen AL, Perraud A-L, Gally F. Mice lacking fatty acid-binding protein 5 are resistant to Listeria monocytogenes. Journal of Innate Immunity. 2019;11:469–80. https://doi.org/10.1159/000496405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kjøbsted R, Chadt A, Jørgensen NO, Kido K, Larsen JK, de Wendt C, et al. TBC1D4 is necessary for enhancing muscle insulin sensitivity in response to AICAR and contraction. Diabetes. 2019;68:1756–66.

    PubMed  Google Scholar 

  68. Woo JR, Kim S-J, Kim KY, Jang H, Shoelson SE, Park S. The carboxy-terminal region of the TBC1D4 (AS160) RabGAP mediates protein homodimerization. Int J Biol Macromol. 2017;103:965–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mueller PA, Zhu L, Tavori H, Huynh K, Giunzioni I, Stafford JM, et al. Deletion of macrophage low-density lipoprotein receptor-related protein 1 (LRP1) accelerates atherosclerosis regression and increases CCR7 expression in plaque macrophages. Circulation. 2018;138:1850–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Getz GS, Reardon CA. Do the Apoe−/− and Ldlr−/− mice yield the same insight on atherogenesis? Arterioscler Thromb Vasc Biol. 2016;36:1734–41.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81503504, 81573733, 81083615, 81704056). Tianjin Education Commission Research Project (Grant 2019KJ055) and Extension Project of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (Grant 201911). Natural Science Fund Project in Jiangxi province (20171ACB21075, 20181BAB205073).

Author information

Authors and Affiliations

Authors

Contributions

Hao Deng, Yingxin Sun and Wenyun Zeng contributed equally to this work.

Corresponding authors

Correspondence to Qing Gao or Xijuan Jiang.

Ethics declarations

Conflict of Interest

Hao Deng, Yingxin Sun, Wenyun Zeng, Huhu Li, Maojuan Guo, Lin Yang, Bin Lu, Bin Yu, Guanwei Fan, Qing Gao, and Xijuan Jiang declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Biology

Electronic supplementary material

ESM 1

(XLSX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Sun, Y., Zeng, W. et al. New Classification of Macrophages in Plaques: a Revolution. Curr Atheroscler Rep 22, 31 (2020). https://doi.org/10.1007/s11883-020-00850-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00850-y

Keywords

Navigation