Skip to main content
Log in

Lipid Emulsions Containing Medium Chain Triacylglycerols Blunt Bradykinin-Induced Endothelium-Dependent Relaxation in Porcine Coronary Artery Rings

  • Original Article
  • Published:
Lipids

Abstract

Lipid emulsions for parenteral nutrition are used to provide calories and essential fatty acids for patients. They have been associated with hypertriglyceridemia, hypercholesterolemia, and metabolic stress, which may promote the development of endothelial dysfunction in patients. The aim of the present study was to determine whether five different industrial lipid emulsions may affect the endothelial function of coronary arteries. Porcine coronary artery rings were incubated with lipid emulsions 0.5, 1, or 2% (v/v) for 30 min before the determination of vascular reactivity in organ chambers and the level of oxidative stress using electron paramagnetic resonance. Incubation of coronary artery rings with either Lipidem®, Medialipid® containing long- and medium-chain triacylglycerols (LCT/MCT), or SMOFlipid® containing LCT, MCT, omega-9, and -3, significantly reduced the bradykinin-induced endothelium-dependent relaxation, affecting both the nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) components, whereas, Intralipid® containing LCT (soybean oil) and ClinOleic® containing LCT (soybean and olive oil) did not have such an effect. The endothelial dysfunction induced by Lipidem® was significantly improved by indomethacin, a cyclooxygenase (COX) inhibitor, inhibitors of oxidative stress (N-acetylcysteine, superoxide dismutase, catalase) and transition metal chelating agents (neocuproine, tetrathiomolybdate, deferoxamine and l-histidine). Lipidem® significantly increased the arterial level of oxidative stress. The present findings indicate that lipid emulsions containing LCT/MCT induce endothelial dysfunction in coronary artery rings by blunting both NO- and EDH-mediated relaxations. The Lipidem®-induced endothelial dysfunction is associated with increased vascular oxidative stress and the formation of COX-derived vasoconstrictor prostanoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DHA:

Docosahexaenoic acid (22:6n-3)

EDH:

Endothelium-dependent hyperpolarization

EPA:

Eicosapentaenoic acid (20:5n-3)

KCN:

Potassium cyanide

LCT:

Long chain triacylglycerols

MCT:

Medium chain triacylglycerols

MnTMPyP:

Mn(III) Tetrakis(1-methyl-4 pyridyl) porphyrin

NAC:

N-acetylcysteine

NO:

Nitric oxide

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

VAS-2870:

3-Benzyl-7-(2-benzoxazolyl) thio-1,2,3-triazolo (4,5-d) pyrimidine

References

  1. Chan S, McCowen KC, Bistrian B (1998) Medium-chain triglyceride and n-3 polyunsaturated fatty acid-containing emulsions in intravenous nutrition. Curr Opin Clin Nutr Metab Care 1:163–169

    Article  CAS  PubMed  Google Scholar 

  2. Ziegler TR (2009) Parenteral nutrition in the critically ill patient. N Engl J Med 361:1088–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boisramé-Helms J, Toti F, Hasselmann M, Meziani F (2015) Lipid emulsions for parenteral nutrition in critical illness. Prog Lip Res 60:1–16

    Article  Google Scholar 

  4. Tilley SL, Coffman TM, Koller BH (2001) Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest 108:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Markowitz S, Neal JM (2009) Immediate lipid emulsion therapy in the successful treatment of bupivacaine systemic toxicity. Reg Anesth Pain Med 34:276

    Article  PubMed  Google Scholar 

  6. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, Bayazeed B, Baron AD (1997) Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 100:1230–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gosmanov AR, Smiley DD, Peng L, Siquiera J, Robalino G, Newton C, Umpierrez GE (2012) Vascular effects of intravenous intralipid and dextrose infusions in obese subjects. Metab Clin Exp 61:1370–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Kreutzenberg SV, Crepaldi C, Marchetto S, Calo L, Tiengo A, Del Prato S, Avogaro A (2000) Plasma free fatty acids and endothelium-dependent vasodilation: effect of chain-length and cyclooxygenase inhibition. J Clin Endocrinol Metab 85:793–798

    Article  PubMed  Google Scholar 

  9. Steer P, Basu S, Lithell H, Vessby B, Berne C, Lind L (2003) Acute elevations of medium- and long-chain fatty acid have different impacts on endothelium-dependent vasodilation in humans. Lipids 38:15–19

    Article  CAS  PubMed  Google Scholar 

  10. Edirisinghe I, McCormick Hallam K, Kappagoda CT (2006) Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta. Clin Sci 111:145–151

    Article  CAS  PubMed  Google Scholar 

  11. Carpentier YA, Simoens C, Siderova V, el Nakadi I, Vanweyenberg V, Eggerickx D, Deckelbaum RJ (1997) Recent developments in lipid emulsions: relevance to intensive care. Clin Nutr 13:73S–78S

    CAS  Google Scholar 

  12. Waitzberg DL, Torrinhas RS, Jacintho TM (2006) New parenteral lipid emulsions for clinical use. J Parenter Enteral Nutr 30:351–367

    Article  CAS  Google Scholar 

  13. Liang B, Wang S, Ye YJ, Yang XD, Wang YL, Qu J, Xie QW, Yin MJ (2008) Impact of postoperative omega-3 fatty acid-supplemented parenteral nutrition on clinical outcomes and immunomodulations in colorectal cancer patients. World J Gastroenterol 14:2434–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calder PC (2009) Hot topics in parenteral nutrition. Rationale for using new lipid emulsions in parenteral nutrition and a review of the trials performed in adults. Proc Nutr Soc 68:252–260

    Article  CAS  PubMed  Google Scholar 

  15. Mayer K, Grimm H, Grimminger F, Seeger W (2002) Parenteral nutrition with n-3 lipids in sepsis. Br J Nutr 87:S69–S75

    Article  CAS  PubMed  Google Scholar 

  16. Zgheel F, Alhosin M, Rashid S, Burban M, Auger C, Schini-Kerth VB (2014) Redox-sensitive induction of Src/PI3-kinase/Akt and MAPKs pathways activate eNOS in response to EPA:DHA 6:1. PLoS One 18:105102

    Article  Google Scholar 

  17. Nakashima M, Mombouli JV, Taylor AA, Vanhoutte PM (1993) Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. J Clin Invest 92:2867–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Auger C, Kim J-H, Trinh S, Chataigneau T, Popken AM, Schini-Kerth VB (2011) Fruit juice-induced endothelium-dependent relaxations in isolated porcine coronary arteries: evaluation of different fruit juices and purees and optimization of a red fruit juice blend. Food Funct 2:245–250

    Article  CAS  PubMed  Google Scholar 

  19. Anselm E, Chataigneau M, Ndiaye M, Chataigneau T, Schini-Kerth VB (2007) Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS. Cardiovasc Res 73:404–413

    Article  CAS  PubMed  Google Scholar 

  20. Rivilla F, Vallejo S, Peiro C, Sanchez-Ferrer CF (2012) Characterization of endothelium-dependent relaxations in the mesenteric vasculature: a comparative study with potential pathophysiological relevance. J Pediatr Surg 47:2044–2049

    Article  PubMed  Google Scholar 

  21. Heaps CL, Robles JC, Sarin V, Mattox ML, Parker JL (2014) Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease. Microcirculation 21:388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Félétou M, Huang Y, Vanhoutte PM (2010) Vasoconstrictor prostanoids. Pflüg Arch-Eur. J Physiol 459:941–950

    Google Scholar 

  23. Feletou M, Huang Y, Vanhoutte PM (2011) Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 164:894–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caughey GE, Cleland LG, Penglis PS, Gamble JR, James MJ (2001) Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2. J Immunol 167:2831–2838

    Article  CAS  PubMed  Google Scholar 

  26. Morin C, Sirois M, Echave V, Rizcallah E, Rousseau E (2009) Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am J Physiol Lung Cell Mol Physiol 296:L130–L139

    Article  CAS  PubMed  Google Scholar 

  27. Adkins Y, Kelley DS (2010) Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem 21:781–792

    Article  CAS  PubMed  Google Scholar 

  28. de Kreutzenberg SV, Puato M, Kiwanuka E, Del Prato S, Pauletto P, Pasini L, Tiengo A, Avogaro A (2003) Elevated non-esterified fatty acids impair nitric oxide independent vasodilation, in humans: evidence for a role of inwardly rectifying potassium channels. Atherosclerosis 169:147–153

    Article  PubMed  Google Scholar 

  29. Krohn K, Koletzko B (2006) Parenteral lipid emulsions in paediatrics. Curr Opin Clin Nutr Metab Care 9:319–323

    Article  CAS  PubMed  Google Scholar 

  30. Umpierrez GE, Smiley D, Robalino G, Peng L, Kitabchi AE, Khan B, Le A, Quyyumi A, Brown V, Phillips LS (2009) Intravenous intralipid-induced blood pressure elevation and endothelial dysfunction in obese African-Americans with type 2 diabetes. J Clin Endocrinol Metab 94:609–614

    Article  CAS  PubMed  Google Scholar 

  31. Steer P, Millgard J, Basu S, Lithell H, Vessby B, Berne C, Lind L (2003) Vitamin C, diclophenac, and l-arginine protect endothelium-dependent vasodilation against elevated circulating fatty acid levels in humans. Atherosclerosis 168:65–72

    Article  CAS  PubMed  Google Scholar 

  32. Chu LM, Robich MP, Bianchi C, Feng J, Liu Y, Xu SH, Burgess T, Sellke FW (2012) Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Am J Physiol Heart Circ Physiol 302:479–488

    Article  Google Scholar 

  33. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945

    Article  CAS  PubMed  Google Scholar 

  34. Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–R1030

    Article  CAS  PubMed  Google Scholar 

  35. Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, Ueda S, Sakanashi M, Takasu N (2007) Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology 148:160–165

    Article  CAS  PubMed  Google Scholar 

  36. Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, Miura D, Takayanagi R (2014) Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis 232:156–164

    Article  CAS  PubMed  Google Scholar 

  37. Osanai H, Okumura K, Hayakawa M, Harada M, Numaguchi Y, Mokuno S, Murase K, Matsui H, Toki Y, Ito T, Hayakawa T (2000) Ascorbic acid improves postischemic vasodilatation impaired by infusion of soybean oil into canine iliac artery. J Cardiovas Pharmacol 36:687–692

    Article  CAS  Google Scholar 

  38. Ilan E, Tirosh O, Madar Z (2005) Triacylglycerol-mediated oxidative stress inhibits nitric oxide production in rat isolated hepatocytes. J Nutr 135:2090–2095

    CAS  PubMed  Google Scholar 

  39. Gutteridge JM, Halliwell B (2010) Antioxidants: molecules, medicines, and myths. Biochem Biophys Res Commun 393:561–564

    Article  CAS  PubMed  Google Scholar 

  40. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    CAS  PubMed  Google Scholar 

  41. Van de Velde M, Wouters PF, Rolf N, Van Aken H, Vandermeersch E (1998) Comparative hemodynamic effects of three different parenterally administered lipid emulsions in conscious dogs. Crit Care Med 26:132–137

    Article  PubMed  Google Scholar 

  42. Boisrame-Helms J, Said A, Burban M, Delabranche X, Stiel L, Zobairi F, Hasselmann M, Schini-Kerth V, Toti F, Meziani F (2014) Medium-chain triglyceride supplementation exacerbates peritonitis-induced septic shock in rats: role on cell membrane remodeling. Shock 42:548–553

    Article  CAS  PubMed  Google Scholar 

  43. Ok SH, Lee SH, Yu J, Park J, Shin IW, Lee Y, Cho H, Choi MJ, Baik J, Hong JM, Han JY, Lee HK, Chung YK, Sohn JT (2015) Lipid emulsion attenuates acetylcholine-induced relaxation in isolated rat aorta. Bio Med Res Int 2015:871545

    Google Scholar 

  44. Vanek VW, Seidner DL, Allen P, Bistrian B, Collier S, Gura K, Miles JM, Valentine CJ, Kochevar M (2012) Clinical role for alternative intravenous fat emulsions. Nutrition in clinical practice. Am Soc Parenter Enteral Nutr 27:150–192

    Article  Google Scholar 

  45. Leaf A, Weber PC (1988) Cardiovascular effects of n-3 fatty acids. N Engl J Med 318:549–557

    Article  CAS  PubMed  Google Scholar 

  46. Granato D, Blum S, Rössle C, Le Boucher J, Malnoë A, Dutot G (2000) Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. J Parenter Enteral Nutr 24:113–118

    Article  CAS  Google Scholar 

  47. Wanten GJ, Calder PC (2007) Immune modulation by parenteral lipid emulsions. Am J Clin Nutr 85:1171–1184

    CAS  PubMed  Google Scholar 

  48. Grimm H, Mertes N, Goeters C, Schlotzer E, Mayer K, Grimminger F, Fürst P (2006) Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients. Eur J Nutr 45:55–60

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie B. Schini-Kerth.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amissi, S., Boisramé-Helms, J., Burban, M. et al. Lipid Emulsions Containing Medium Chain Triacylglycerols Blunt Bradykinin-Induced Endothelium-Dependent Relaxation in Porcine Coronary Artery Rings. Lipids 52, 235–243 (2017). https://doi.org/10.1007/s11745-016-4225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4225-y

Keywords

Navigation