Skip to main content
Log in

Identification of Oxidized Phosphatidylinositols Present in OxLDL and Human Atherosclerotic Plaque

  • Original Article
  • Published:
Lipids

Abstract

Oxidized low-density lipoprotein (OxLDL) plays an important role in initiation and progression of atherosclerosis. Proatherogenic effects of OxLDL have been attributed to bioactive phospholipids generated during LDL oxidation. It is unknown what effect oxidation has on the phosphatidylinositol (PtdIns) molecules in LDL, even though PtdIns is 6% of the total LDL phospholipid pool. We sought to identify and quantitate oxidized phosphatidylinositol (OxPtdIns) species in OxLDL and human atherosclerotic plaque. Bovine liver PtdIns was subjected to non-enzymatic and lipoxygenase-catalyzed oxidation. Reversed-phase liquid chromatography with negative ESI–MS identified and confirmed compounds by fragmentation pattern analysis from which an OxPtdIns library was generated. Twenty-three OxPtdIns molecules were identified in copper-oxidized human LDL at 0, 6, 12, 24, 30, and 48 h, and in human atherosclerotic plaque. In OxLDL, OxPtdIns species containing aldehydes and carboxylates comprised 17.3 ± 0.1 and 0.9 ± 0.2%, respectively, of total OxPtdIns in OxLDL at 48 h. Hydroperoxides and isoprostanes at 24 h (68.5 ± 0.2 and 22.8 ± 0.2%) were significantly greater than 12 h (P < 0.01) without additional changes thereafter. Hydroxides decreased with increased oxidation achieving a minimum at 24 h (5.2 ± 0.3%). Human atherosclerotic plaques contained OxPtdIns species including aldehydes, carboxylates, hydroxides, hydroperoxides and isoprostanes, comprising 18.6 ± 4.7, 1.5 ± 0.7, 16.5 ± 7.4, 33.3 ± 1.1 and 30.2 ± 3.3% of total OxPtdIns compounds. This is the first identification of OxPtdIns molecules in human OxLDL and atherosclerotic plaque. With these novel molecules identified we can now investigate their potential role in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CM:

2:1 Chloroform:methanol

BHT:

Butylated hydroxytoluene

EDTA:

Ethylenediaminetetraacetic acid

EPD:

Embolic protection device

IL:

Interleukin

I/R:

Ischemia/reperfusion

KDdiA-PtdCho:

1-Palmitoyl-2-(4-keto-dodec-3-ene-dioyl)-phosphatidylcholine

LGE2:

Levuglandin E2

LOX-I:

Lipoxygenase-I

Lp-PLA2:

Lipoprotein-associated phospholipase A2

MRM:

Multiple reaction monitoring

NP:

Normal-phase

OxLDL:

Oxidized low density lipoprotein

OxPtdCho:

Oxidized phosphocholine

OxPtdIns:

Oxidized phosphatidylinositol

PAF:

Platelet-activating factor

PAPtdCho:

1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

PCI:

Percutaneous coronary intervention

PDHPtdCho:

1-Palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine

PEI:

1-Palmitoyl-2-epoxyisoprostane

PGPtdCho:

1-Palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine

PtdIns:

Phosphatidylinositol

PtdIns-4-P:

Phosphatidylinositol 4-phosphate

PtdIns-4,5-P2 :

Phosphatidylinositol 4,5-bisphosphate

PtdIns-3,4,5-P3 :

Phosphatidylinositol 3,4,5-trisphosphate

PtdIns 3K:

Phosphoinositide 3-kinases

PKB:

Protein kinase B

PLPtdCho:

1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine

PONPtdCho:

1-Palmitoyl-2-(9-oxo)nonanoyl-sn-glycero-3-phosphocholine

POVPtdCho:

1-Palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphocholine

ROS:

Reactive oxygen species

RP:

Reversed-phase

SAPtdCho:

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine

SEC:

1-Stearoyl-epoxycholine

SEI:

1-Stearoyl-epoxyisoprostane

SLPtdCho:

1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine

SVG:

Saphenous vein graft

TIC:

Total ion chromatogram

TNFα:

Tumor necrosis factor alpha

References

  1. Hartvigsen K, Chou M-Y, Hansen L, Shaw P, Tsimikas S, Binder C, Witztum J (2009) The role of innate immunity in atherogenesis. J Lipid Res 50 Suppl:S388–S393

    PubMed  Google Scholar 

  2. Steinberg D, Witztum J (2010) Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol 30:2311–2316

    Article  CAS  PubMed  Google Scholar 

  3. Levitan I, Volkov S, Subbaiah PV (2010) Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 13:39–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stemmer U, Dunai Z, Koller D, Pürstinger G, Zenzmaier E, Deigner H, Aflaki E, Kratky D, Hermetter A (2012) Toxicity of oxidized phospholipids in cultured macrophages. Lipids Health Dis 11:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pégorier S, Stengel D, Durand H, Croset M, Ninio E (2006) Oxidized phospholipid: POVPC binds to platelet-activating-factor receptor on human macrophages: implications in atherosclerosis. Atherosclerosis 188:433–443

    Article  PubMed  Google Scholar 

  6. Fruhwirth G, Moumtzi A, Loidl A, Ingolic E, Hermetter A (2006) The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta 1761:1060–1069

    Article  CAS  PubMed  Google Scholar 

  7. van Dijk R, Kolodgie F, Ravandi A, Leibundgut G, Hu P, Prasad A, Mahmud E, Dennis E, Curtiss L, Witztum J, Wasserman B, Otsuka F, Virmani R, Tsimikas S (2012) Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions. J Lipid Res 53:2773–2790

    Article  PubMed  PubMed Central  Google Scholar 

  8. Skipski VP, Barclay M, Barclay RK, Fetzer VA, Good JJ, Archibald FM (1967) Lipid composition of human serum lipoproteins. Biochem J 1967:340–352

    Article  Google Scholar 

  9. Fruman DA, Meyers RE, Cantley LC (1997) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  Google Scholar 

  10. Cantrell DA (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114:1439–1445

    CAS  PubMed  Google Scholar 

  11. Kane LP, Weiss A (2003) The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 192:7–20

    Article  CAS  PubMed  Google Scholar 

  12. Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ravandi A, Babaei S, Leung R, Monge J, Hoppe G, Hoff H, Kamido H, Kuksis A (2004) Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 39:97–109

    CAS  PubMed  Google Scholar 

  14. Thomas C, Morgan L, Maskrey B, Murphy R, Kühn H, Hazen S, Goodall A, Hamali H, Collins P, O’Donnell V (2010) Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 285:6891–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kamido H, Eguchi H, Ikeda H, Imaizumi T, Yamana K, Hartvigsen K, Ravandi A, Kuksis A (2002) Core aldehydes of alkyl glycerophosphocholines in atheroma induce platelet aggregation and inhibit endothelium-dependent arterial relaxation. J Lipid Res 43:158–166

    CAS  PubMed  Google Scholar 

  16. Bochkov V, Oskolkova O, Birukov K, Levonen A-L, Binder C, Stöckl J (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakanishi H, Iida Y, Shimizu T, Taguchi R (2009) Analysis of oxidized phosphatidylcholines as markers for oxidative stress, using multiple reaction monitoring with theoretically expanded data sets with reversed-phase liquid chromatography/tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 877:1366–1374

    Article  CAS  Google Scholar 

  18. Ibusuki D, Nakagawa K, Asai A, Oikawa S, Masuda Y, Suzuki T, Miyazawa T (2008) Preparation of pure lipid hydroperoxides. J Lipid Res 49:2668–2677

    Article  CAS  PubMed  Google Scholar 

  19. Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  20. Gruber F, Bicker W, Oskolkova O, Tschachler E, Bochkov V (2012) A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 53:1232–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ravandi A, Leibundgut G, Hung M-Y, Patel M, Hutchins PM, Murphy RC, Prasad A, Mahmud E, Miller YI, Dennis EA, Witztum JL, Tsimikas S (2014) Release and capture of bioactive oxidized phospholipids and oxidized cholesteryl esters during percutaneous coronary and peripheral arterial interventions in humans. J Am Coll Cardiol 63:1961–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. White CW, Hasanally D, Mundt P, Li Y, Xiang B, Klein J, Muller A, Ambrose E, Ravandi A, Arora RC, Lee TW, Hryshko LV, Large S, Tian G, Freed DH (2015) A whole blood-based perfusate provides superior preservation of myocardial function during ex vivo heart perfusion. J Heart Lung Transplant 34:113–121

    Article  PubMed  Google Scholar 

  23. Zeglinski M, Premecz S, Lerner J, Wtorek P, daSilva M, Hasanally D, Chaudhary R, Sharma A, Thliveris J, Ravandi A, Singal PK, Jassal DS (2014) Congenital absence of nitric oxide synthase 3 potentiates cardiac dysfunction and reduces survival in doxorubicin- and trastuzumab-mediated cardiomyopathy. Can J Cardiol 30:359–367

    Article  PubMed  Google Scholar 

  24. Breckenridge WC, Palmer FB (1982) Fatty acid composition of human plasma lipoprotein phosphatidylinositols. Biochim Biophys Acta 712:707–711

    Article  CAS  PubMed  Google Scholar 

  25. Yin H, Cox BE, Liu W, Porter NA, Morrow JD, Milne GL (2009) Identification of intact oxidation products of glycerophospholipids in vitro and in vivo using negative ion electrospray ion trap mass spectrometry. J Mass Spectrom 44:672–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ravandi A, Kuksis A, Shaikh N, Jackowski G (1997) Preparation of Schiff base adducts of phosphatidylcholine core aldehydes and aminophospholipids, amino acids, and myoglobin. Lipids 32:989–1001

    Article  CAS  PubMed  Google Scholar 

  27. Bordun KA, Premecz S, daSilva M, Mandal S, Goyal V, Glavinovic T, Cheung M, Cheung D, White CW, Chaudhary R, Freed DH, Villarraga HR, Herrmann J, Kohli M, Ravandi A, Thliveris J, Pitz M, Singal PK, Mulvagh S, Jassal DS (2015) The utility of cardiac biomarkers and echocardiography for the early detection of bevacizumab- and sunitinib-mediated cardiotoxicity. Am J Physiol Heart Circ Physiol 309:H692–H701

    Article  CAS  PubMed  Google Scholar 

  28. White C, Ali A, Hasanally D, Xiang B, Li Y, Mundt P, Lytwyn M, Colah S, Klein J, Ravandi A, Arora R, Lee T, Hryshko L, Large S, Tian G, Freed D (2013) A cardioprotective preservation strategy employing ex vivo heart perfusion facilitates successful transplant of donor hearts after cardiocirculatory death. J Heart Lung Transplant 32:734–743

    Article  PubMed  Google Scholar 

  29. Kimura T, Shibata Y, Yamauchi K, Igarashi A, Inoue S, Abe S, Fujita K, Uosaki Y, Kubota I (2012) Oxidized phospholipid, 1-palmitoyl-2-(9′-oxo-nonanoyl)-glycerophosphocholine (PON-GPC), produced in the lung due to cigarette smoking, impairs immune function in macrophages. Lung 190:169–182

    Article  CAS  PubMed  Google Scholar 

  30. Chen R, Yang L, McIntyre T (2007) Cytotoxic phospholipid oxidation products. Cell death from mitochondrial damage and the intrinsic caspase cascade. J Biol Chem 282:24842–24850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Springstead J, Gugiu B, Lee S, Cha S, Watson A, Berliner J (2012) Evidence for the importance of OxPAPC interaction with cysteines in regulating endothelial cell function. J Lipid Res 53:1304–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B (2000) Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. FEBS Lett 471:34–38

    Article  CAS  PubMed  Google Scholar 

  33. Fruhwirth G, Loidl A, Hermetter A (2007) Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta 1772:718–736

    Article  CAS  PubMed  Google Scholar 

  34. Birukova A, Starosta V, Tian X, Higginbotham K, Koroniak L, Berliner J, Birukov K (2013) Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Transl Res 161:495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P (2001) Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 42:663–672

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by operating grants from the Heart and Stroke foundation of Canada and Research Manitoba. DH was a recipient of a Research Manitoba graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ravandi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 65 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanally, D., Edel, A., Chaudhary, R. et al. Identification of Oxidized Phosphatidylinositols Present in OxLDL and Human Atherosclerotic Plaque. Lipids 52, 11–26 (2017). https://doi.org/10.1007/s11745-016-4217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4217-y

Keywords

Navigation