Skip to main content

Advertisement

Log in

Oxidized Phospholipid, 1-Palmitoyl-2-(9′-Oxo-Nonanoyl)-Glycerophosphocholine (PON-GPC), Produced in the Lung Due to Cigarette Smoking, Impairs Immune Function in Macrophages

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

Pulmonary innate immunity is impaired in cigarette smokers, because the abundant oxidants present in cigarette smoke (CS) cause injury to lung cells. Pulmonary surfactant is a unique material that is important roles in reducing surface tension in the lung and defending against invading pathogens. Oxidants reportedly cleave surfactant phospholipids, resulting in the production of oxidized phospholipids, such as 1-palmitoyl-2-(9′-oxo-nonanoyl)-glycerophosphocholine (PON-GPC). Although oxidation of surfactant lipids is thought to be involved in the pathogenesis of smoking-related lung disease, there are no reports on the effect of oxidized surfactant lipid on the immune function of macrophages. We hypothesized that cigarette smoking elevates PON-GPC levels in the lung, and that PON-GPC impairs the innate immune function of macrophages.

Methods

The levels of PON-GPC in bronchoalveolar lavage fluid (BALF) recovered from mice exposed to CS for 2 weeks (n = 7) were measured by liquid chromatography with electrospray–ionization tandem mass spectrometry. The effects of PON-GPC on inducibility of tumor necrosis factor (TNF)-α, nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate (NADP+) production, as well as bactericidal activity, were investigated in RAW264.7 cells or primary alveolar macrophages.

Results

The levels of PON-GPC in BALF of mice exposed to CS were significantly elevated, compared with those of control mice. PON-GPC attenuated TNF-α, NO, and NADP+ production in macrophages on stimulation with LPS plus IFN-γ. PON-GPC treatment attenuated the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In addition, PON-GPC reduced the bactericidal activity of RAW264.7 cells.

Conclusions

CS may attenuate innate immunity in the lungs through oxidization of surfactant phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AM:

Alveolar macrophage

BALF:

Bronchoalveolar lavage fluid

CS:

Cigarette smoke

DPPC:

Dipalmitoyl phosphatidylcholine

EDTA:

Ethylenediamine-N,N,N′,N′-tetraacetic acid

ELF:

Epithelial lining fluid

ERK:

Extracellular signal-regulated kinase

IFN:

Interferon

JNK:

Jun kinase

LC/MS/MS:

liquid chromatography with electrospray-ionization tandem mass spectrometry

LPS:

Lipopolysaccharide

MAPK:

Mitogen activated protein kinase

MOI:

Multiplicity of infection

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

Ox-PAPC:

1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine

PG-GPC:

1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine

PON-GPC:

1-palmitoyl-2-(9′-oxo-nonanoyl)-glycerophosphocholine

POV-GPC:

1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine

ROS:

Reactive oxygen species

STAT:

Signal transducer and activator of transcription

TLR4:

Toll-like receptor 4

TNF:

Tumor necrosis factor

References

  1. Shibata Y, Berclaz PY, Chroneos ZC, Yoshida M, Whitsett JA, Trapnell BC (2001) GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 15:557–567

    Article  PubMed  CAS  Google Scholar 

  2. Pryor WA, Stone K (1993) Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 686:12–27 discussion 27–18

    Article  PubMed  CAS  Google Scholar 

  3. Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    PubMed  CAS  Google Scholar 

  4. Machiya J, Shibata Y, Yamauchi K, Hirama N, Wada T, Inoue S, Abe S, Takabatake N, Sata M, Kubota I (2007) Enhanced expression of MafB inhibits macrophage apoptosis induced by cigarette smoke exposure. Am J Respir Cell Mol Biol 36:418–426

    Article  PubMed  CAS  Google Scholar 

  5. Rahman I, MacNee W (1996) Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med 21:669–681

    Article  PubMed  CAS  Google Scholar 

  6. Morrison D, Rahman I, Lannan S, MacNee W (1999) Epithelial permeability, inflammation, and oxidant stress in the air spaces of smokers. Am J Respir Crit Care Med 159:473–479

    PubMed  CAS  Google Scholar 

  7. Kotani N, Hashimoto H, Sessler DI, Yoshida H, Kimura N, Okawa H, Muraoka M, Matsuki A (2000) Smoking decreases alveolar macrophage function during anesthesia and surgery. Anesthesiology 92:1268–1277

    Article  PubMed  CAS  Google Scholar 

  8. Kerecman J, Mustafa SB, Vasquez MM, Dixon PS, Castro R (2008) Immunosuppressive properties of surfactant in alveolar macrophage NR8383. Inflamm Res 57:118–125

    Article  PubMed  CAS  Google Scholar 

  9. Raychaudhuri B, Abraham S, Bonfield TL, Malur A, Deb A, DiDonato JA, Kavuru MS, Thomassen MJ (2004) Surfactant blocks lipopolysaccharide signaling by inhibiting both mitogen-activated protein and IkappaB kinases in human alveolar macrophages. Am J Respir Cell Mol Biol 30:228–232

    Article  PubMed  CAS  Google Scholar 

  10. Wright JR (1997) Immunomodulatory functions of surfactant. Physiol Rev 77:931–962

    PubMed  CAS  Google Scholar 

  11. Putman E, van Golde LM, Haagsman HP (1997) Toxic oxidant species and their impact on the pulmonary surfactant system. Lung 175:75–103

    Article  PubMed  CAS  Google Scholar 

  12. Uhlson C, Harrison K, Allen CB, Ahmad S, White CW, Murphy RC (2002) Oxidized phospholipids derived from ozone-treated lung surfactant extract reduce macrophage and epithelial cell viability. Chem Res Toxicol 15:896–906

    Article  PubMed  CAS  Google Scholar 

  13. Dahl M, Bauer AK, Arredouani M, Soininen R, Tryggvason K, Kleeberger SR, Kobzik L (2007) Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II. J Clin Invest 117:757–764

    Article  PubMed  CAS  Google Scholar 

  14. Ma Z, Li J, Yang L, Mu Y, Xie W, Pitt B, Li S (2004) Inhibition of LPS- and CpG DNA-induced TNF-alpha response by oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol 286:L808–L816

    Article  PubMed  CAS  Google Scholar 

  15. Mackman N (2003) How do oxidized phospholipids inhibit LPS signaling? Arterioscler Thromb Vasc Biol 23:1133–1136

    Article  PubMed  CAS  Google Scholar 

  16. Nonas S, Birukova AA, Fu P, Xing J, Chatchavalvanich S, Bochkov VN, Leitinger N, Garcia JG, Birukov KG (2008) Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo. Crit Care 12:R27

    Article  PubMed  Google Scholar 

  17. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:77–81

    Article  PubMed  CAS  Google Scholar 

  18. Hirama N, Shibata Y, Otake K, Machiya J, Wada T, Inoue S, Abe S, Takabatake N, Sata M, Kubota I (2007) Increased surfactant protein-D and foamy macrophages in smoking-induced mouse emphysema. Respirology 12:191–201

    Article  PubMed  Google Scholar 

  19. Laakko T, King L, Fraker P (2002) Versatility of merocyanine 540 for the flow cytometric detection of apoptosis in human and murine cells. J Immunol Methods 261:129–139

    Article  PubMed  CAS  Google Scholar 

  20. Turturro F, Von Burton G, Friday E (2007) Hyperglycemia-induced thioredoxin-interacting protein expression differs in breast cancer-derived cells and regulates paclitaxel IC50. Clin Cancer Res 13:3724–3730

    Article  PubMed  CAS  Google Scholar 

  21. Berclaz PY, Shibata Y, Whitsett JA, Trapnell BC (2002) GM-CSF, via PU.1, regulates alveolar macrophage Fcgamma R-mediated phagocytosis and the IL-18/IFN-gamma -mediated molecular connection between innate and adaptive immunity in the lung. Blood 100:4193–4200

    Article  PubMed  CAS  Google Scholar 

  22. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533

  23. Emre Y, Hurtaud C, Nubel T, Criscuolo F, Ricquier D, Cassard-Doulcier AM (2007) Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem J 402:271–278

    Article  PubMed  CAS  Google Scholar 

  24. Kaisho T, Akira S (2000) Critical roles of Toll-like receptors in host defense. Crit Rev Immunol 20:393–405

    PubMed  CAS  Google Scholar 

  25. Hu X, Chen J, Wang L, Ivashkiv LB (2007) Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82:237–243

    Article  PubMed  CAS  Google Scholar 

  26. Held TK, Weihua X, Yuan L, Kalvakolanu DV, Cross AS (1999) Gamma interferon augments macrophage activation by lipopolysaccharide by two distinct mechanisms, at the signal transduction level and via an autocrine mechanism involving tumor necrosis factor alpha and interleukin-1. Infect Immun 67:206–212

    PubMed  CAS  Google Scholar 

  27. Halios CH, Assimakopoulos VD, Helmis CG, Flocas HA (2005) Investigating cigarette-smoke indoor pollution in a controlled environment. Sci Total Environ 337:183–190

    Article  PubMed  CAS  Google Scholar 

  28. Rennard SI, Basset G, Lecossier D, O’Donnell KM, Pinkston P, Martin PG, Crystal RG (1986) Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 60:532–538

    PubMed  CAS  Google Scholar 

  29. Gaschler GJ, Zavitz CC, Bauer CM, Skrtic M, Lindahl M, Robbins CS, Chen B, Stampfli MR (2008) Cigarette smoke exposure attenuates cytokine production by mouse alveolar macrophages. Am J Respir Cell Mol Biol 38:218–226

    Article  PubMed  CAS  Google Scholar 

  30. Berenson CS, Wrona CT, Grove LJ, Maloney J, Garlipp MA, Wallace PK, Stewart CC, Sethi S (2006) Impaired alveolar macrophage response to Haemophilus antigens in chronic obstructive lung disease. Am J Respir Crit Care Med 174:31–40

    Article  PubMed  CAS  Google Scholar 

  31. Drannik AG, Pouladi MA, Robbins CS, Goncharova SI, Kianpour S, Stampfli MR (2004) Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 170:1164–1171

    Article  PubMed  Google Scholar 

  32. Bermudez LE, Young LS (1988) Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. J Immunol 140:3006–3013

    PubMed  CAS  Google Scholar 

  33. Ehlers S (2005) Tumor necrosis factor and its blockade in granulomatous infections: differential modes of action of infliximab and etanercept? Clin Infect Dis 41(Suppl 3):S199–S203

    Article  PubMed  CAS  Google Scholar 

  34. Pacelli R, Wink DA, Cook JA, Krishna MC, DeGraff W, Friedman N, Tsokos M, Samuni A, Mitchell JB (1995) Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J Exp Med 182:1469–1479

    Article  PubMed  CAS  Google Scholar 

  35. Kang YJ, Chen J, Otsuka M, Mols J, Ren S, Wang Y, Han J (2008) Macrophage deletion of p38alpha partially impairs lipopolysaccharide-induced cellular activation. J Immunol 180:5075–5082

    PubMed  CAS  Google Scholar 

  36. Valledor AF, Sanchez-Tillo E, Arpa L, Park JM, Caelles C, Lloberas J, Celada A (2008) Selective roles of MAPKs during the macrophage response to IFN-gamma. J Immunol 180:4523–4529

    PubMed  CAS  Google Scholar 

  37. Chan ED, Riches DW (2001) IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol 280:C441–C450

    PubMed  CAS  Google Scholar 

  38. Chen CC, Wang JK (1999) p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol 55:481–488

    PubMed  CAS  Google Scholar 

  39. El Benna J, Han J, Park JW, Schmid E, Ulevitch RJ, Babior BM (1996) Activation of p38 in stimulated human neutrophils: phosphorylation of the oxidase component p47phox by p38 and ERK but not by JNK. Arch Biochem Biophys 334:395–400

    Article  PubMed  CAS  Google Scholar 

  40. Yoo BK, Choi JW, Shin CY, Jeon SJ, Park SJ, Cheong JH, Han SY, Ryu JR, Song MR, Ko KH (2008) Activation of p38 MAPK induced peroxynitrite generation in LPS plus IFN-gamma-stimulated rat primary astrocytes via activation of iNOS and NADPH oxidase. Neurochem Int 52:1188–1197

    Article  PubMed  CAS  Google Scholar 

  41. Kasahara E, Sekiyama A, Hori M, Hara K, Takahashi N, Konishi M, Sato EF, Matsumoto S, Okamura H, Inoue M (2011) Mitochondrial density contributes to the immune response of macrophages to lipopolysaccharide via the MAPK pathway. FEBS Lett 585:2263–2268

    Article  PubMed  CAS  Google Scholar 

  42. Banzet N, Francois D, Polla BS (1999) Tobacco smoke induces mitochondrial depolarization along with cell death: effects of antioxidants. Redox Rep 4:229–236

    Article  PubMed  CAS  Google Scholar 

  43. Postlethwait EM (2007) Scavenger receptors clear the air. J Clin Invest 117:601–604

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant-in-aid from the Global COE program of the Japan Society for the Promotion of Science and grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (18590835, 18790530, 19590880, and 20590892).

Conflict of interest

None of the authors have a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Shibata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Shibata, Y., Yamauchi, K. et al. Oxidized Phospholipid, 1-Palmitoyl-2-(9′-Oxo-Nonanoyl)-Glycerophosphocholine (PON-GPC), Produced in the Lung Due to Cigarette Smoking, Impairs Immune Function in Macrophages. Lung 190, 169–182 (2012). https://doi.org/10.1007/s00408-011-9331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-011-9331-2

Keywords

Navigation