Skip to main content
Log in

Stanniocalcin 1 Enhances Carbon Flux from Glucose to Lipids in White Retroperitoneal Adipose Tissue in the Fed Rat

  • Rapid Communication
  • Published:
Lipids

Abstract

The present work assesses in vitro the role of human Stanniocalcin 1 (hSTC-1) in glucose metabolism in white retroperitoneal adipose tissue (WRAT) from fed rat. In the fed state, hSTC1 increases the incorporation of 14C from glucose into lipids in the rat WRAT. The increase in lipogenesis capacity supports the hypothesis that the activity of the glycerol-3-phosphate-generating pathway (glycolysis) from glucose is regulated by hSTC-1. The effect of hSTC-1 on de novo fatty acid synthesis and on glucose oxidation in WRAT is supported by an 85 % increase in 14CO2 production from 14C-glucose. The incubation of WRAT in the presence of hSTC-1 maintained the ADP/ATP ratio close to the control group. The presence of hSTC-1 in the incubation medium did not inhibit the lipolytic effect of epinephrine. In conclusion, hSTC-1 is one of the hormonal factors that control glucose metabolism in WRAT in the fed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

G3P:

Glycerol 3 Phosphate

hSTC-1:

Human Stanniocalcin 1

KH:

Krebs Henseleit

NADPH:

Nicotinamide adenine dinucleotide phosphate

TAG:

Triacylglycerols

WAT:

White adipose tissue

WRAT:

White retroperitoneal adipose tissue

References

  1. Chaves VE, Frasson D, Kawashita NH (2011) Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93:1631–1640. doi:10.1016/j.biochi.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen TS, Jessen N, Jørgensen JOL et al (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol. doi:10.1530/JME-13-0277

    Google Scholar 

  3. Wagner GF, Hampong M, Park CM, Copp DH (1986) Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol 63:481–491. doi:10.1016/0016-6480(86)90149-8

    Article  CAS  PubMed  Google Scholar 

  4. Wagner GF, Milliken C, Friesen HG, Copp DH (1991) Studies on the regulation and characterization of plasma stanniocalcin in rainbow trout. Mol Cell Endocrinol 79:129–138. doi:10.1016/0303-7207(91)90103-Y

    Article  CAS  PubMed  Google Scholar 

  5. Yeung BHY, Law AYS, Wong CKC (2012) Evolution and roles of stanniocalcin. Mol Cell Endocrinol 349:272–280. doi:10.1016/j.mce.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  6. Serlachius M, Andersson LC (2004) Upregulated expression of stanniocalcin-1 during adipogenesis. Exp Cell Res 296:256–264. doi:10.1016/j.yexcr.2004.02.016

    Article  CAS  PubMed  Google Scholar 

  7. Serlachius M, Zhang KZ, Andersson LC (2004) Stanniocalcin in terminally differentiated mammalian cells. Peptides 25:1657–1662. doi:10.1016/j.peptides.2004.03.031

    Article  CAS  PubMed  Google Scholar 

  8. Paciga M, Hirvi ER, James K, Wagner GF (2005) Characterization of big stanniocalcin variants in mammalian adipocytes and adrenocortical cells. Am J Physiol Endocrinol Metab 289:E197–E205. doi:10.1152/ajpendo.00581.2004

    Article  CAS  PubMed  Google Scholar 

  9. Schein V, Kucharski LC, Guerreiro PMG et al (2015) Stanniocalcin 1 effects on the renal gluconeogenesis pathway in rat and fish. Mol Cell Endocrinol 414:1–8. doi:10.1016/j.mce.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  10. De Niu P, Radman DP, Jaworski EM et al (2000) Development of a human stanniocalcin radioimmunoassay: serum and tissue hormone levels and pharmacokinetics in the rat. Mol Cell Endocrinol 162:131–144. doi:10.1016/S0303-7207(00)00199-4

    Article  PubMed  Google Scholar 

  11. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509. doi:10.1007/s10858-011-9570-9

    CAS  PubMed  Google Scholar 

  12. Torres ILS, Vasconcellos AP, Silveira Cucco SN, Dalmaz C (2001) Effect of repeated stress on novelty-induced antinociception in rats. Braz J Med Biol Res 34:241–244. doi:10.1590/S0100-879X2001000200012

    Article  CAS  PubMed  Google Scholar 

  13. de Resende PE, Kaiser S, Pittol V et al (2015) Influence of crude extract and bioactive fractions of Ilex paraguariensis A. St. Hil. (yerba mate) on the Wistar rat lipid metabolism. J Funct Foods 15:440–451. doi:10.1016/j.jff.2015.03.040

    Article  Google Scholar 

  14. Proença ARG, Sertié RAL, Oliveira AC et al (2014) New concepts in white adipose tissue physiology. Braz J Med Biol Res 47:192–205. doi:10.1590/1414-431X20132911

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang CW (2015) Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 1861:793–805. doi:10.1016/j.bbalip.2015.12.010

    Article  Google Scholar 

  16. Dos Santos MP, De França SA, Dos Santos JTF et al (2012) A low-protein, high-carbohydrate diet increases fatty acid uptake and reduces norepinephrine-induced lipolysis in rat retroperitoneal white adipose tissue. Lipids 47:279–289. doi:10.1007/s11745-011-3648-8

    Article  PubMed  Google Scholar 

  17. McCudden CR, Majewski A, Chakrabarti S, Wagner GF (2004) Co-localization of stanniocalcin-1 ligand and receptor in human breast carcinomas. Mol Cell Endocrinol 213:167–172. doi:10.1016/j.mce.2003.10.042

    Article  CAS  PubMed  Google Scholar 

  18. Brasaemle DL, Subramanian V, Garcia A et al (2009) Perilipin A and the control of triacylglycerol metabolism. Mol Cell Biochem 326:15–21. doi:10.1007/s11010-008-9998-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. RSMS and LCK are PQ-CNPq fellows, and AGC and JFAM are CNPq fellows, and VS is a PNPD-CAPES fellow. The experiments were performed according to the current Brazilian laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline G. Cozer.

Ethics declarations

Conflict of interest

We declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozer, A.G., Trapp, M., Vieira Marques, C. et al. Stanniocalcin 1 Enhances Carbon Flux from Glucose to Lipids in White Retroperitoneal Adipose Tissue in the Fed Rat. Lipids 51, 1303–1307 (2016). https://doi.org/10.1007/s11745-016-4202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4202-5

Keywords

Navigation