Skip to main content
Log in

A Low-Protein, High-Carbohydrate Diet Increases Fatty Acid Uptake and Reduces Norepinephrine-Induced Lipolysis in Rat Retroperitoneal White Adipose Tissue

  • Original Article
  • Published:
Lipids

Abstract

A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-α, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-14C]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-14C]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACTH:

Adrenocorticotropic hormone

AKT:

Serine/threonine protein kinase

ATGL:

Adipose triglyceride lípase

cAMP:

Cyclic adenosine monophosphate

EAT:

Epididymal adipose tissue

EtOH:

Ethyl alcohol

FA:

Fatty acids

FFA:

Free fatty acid

G3P:

Glycerol-3-phosphate

GLUT-4:

Glucose transporter type 4

GyK:

Glycerokinase

HPA:

Hypothalamic-pituitary-adrenal axis

HSL:

Hormone-sensitive lipase

IR:

Insulin receptor

IRS-1:

Insulin receptor substrate 1

LPHC:

Low-protein, high-carbohydrate diet

LPL:

Lipoprotein lipase

NE:

Norepinephrine

PDE3B:

Phosphodiesterase 3B

PEPCK:

Phosphoenolpyruvate carboxykinase

PI3K:

Phosphotidylinositol 3-kinase

PKA:

Protein kinase A

PPARγ:

Peroxisome proliferator-activated receptors γ

RWAT:

Retroperitoneal white adipose tissue

SE:

Standard error

T3:

Triiodothyronine

T4:

Thyroxine

TAG:

Triacylglycerol

TNF-α:

Tumor necrosis factor-α

WAT:

White adipose tissue

References

  1. Vázquez-Vela ME, Torres N, Tovar AR (2008) White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 39:715–728

    Article  PubMed  Google Scholar 

  2. Turnbull AV, Rivier C (1995) Regulation of the HPA axis by cytokines. Brain Behav Immun 9:253–275

    Article  PubMed  CAS  Google Scholar 

  3. Meyers JH, Hargus WA (1959) Factors influencing food intake of rats fed low-protein rations. Am J Physiol 197:1350–1352

    Google Scholar 

  4. White BD, Porter MH, Martin RJ (2000) Protein selection, food intake, and body composition in response to the amount of dietary protein. Physiol Behav 69:383–389

    Article  CAS  Google Scholar 

  5. National Research Council, Subcommittee of Laboratory Animals Nutrition (1995) In: Nutrient requirements of the laboratory animals, 4th Revised edn. National Academy Press, Washington, pp 11–79

  6. Du F, Higginbotham DA, White BD (2000) Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J Nutr 130:514–521

    PubMed  CAS  Google Scholar 

  7. Webster AJ (1993) Energy partitioning, tissue growth and appetite control. Proc Nutr Soc 52:69–76

    Article  PubMed  CAS  Google Scholar 

  8. Aparecida de França S, Dos Santos MP, Garófalo MAR, Navegantes LC, Kettelhut IC, Lopes CF, Kawashita NH (2009) Low protein diet changes the energetic balance and sympathetic activity in brown adipose tissue (BAT) of growing rats. Nutrition 25:1186–1192

    Article  PubMed  Google Scholar 

  9. Buzelle SL, Santos MP, Baviera AM, Lopes CF, Garófalo MA, Navegantes LC, Kettelhut IC, Chaves VE, Kawashita NH (2010) A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats. Can J Physiol Pharmacol 88:1157–1165

    Article  PubMed  CAS  Google Scholar 

  10. Pond CM (1999) Physiological specialisation of adipose tissue. Prog Lipid Res 38:225–248

    Article  PubMed  CAS  Google Scholar 

  11. Belzung F, Raclot T, Groscolas R (1993) Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am J Physiol 264:r1111–r1118

    PubMed  CAS  Google Scholar 

  12. Gaíva MH, Couto RC, Oyama LM, Couto GE, Silveira VL, Riberio EB, Nascimento CM (2001) Polyunsaturated fatty acid-rich diets: effect on adipose tissue metabolism in rats. Br J Nutr 86:371–377

    Article  PubMed  Google Scholar 

  13. Arner P (1997) Regional adipocity in man. J Endocrinol 155:191–192

    Article  PubMed  CAS  Google Scholar 

  14. Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, Müller M, Kooistra T, Cinti S, Kleemann R, Drevon CA (2010) A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PLoS One 5:e11525

    Article  PubMed  Google Scholar 

  15. Garófalo MAR, Kettelhut IC, Roselino JE, Migliorini RH (1996) Effect of acute cold exposure on norepinephrine turnover rates in rat white adipose tissue. J Auton Nerv Syst 60:206–208

    Article  PubMed  Google Scholar 

  16. Kawashita NH, Festuccia WT, Brito MN, Moura MA, Brito SR, Garófalo MA, Kettelhut IC, Migliorini RH (2002) Glycerokinase activity in brown adipose tissue: a sympathetic regulation? Am J Physiol Regul Integr Comp Physiol 282:R1185–R1190

    PubMed  CAS  Google Scholar 

  17. Rodbell M (1964) Metabolism of isolated fat cells. I— Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  18. Newsholme EA, Robinson J, Taylor KA (1967) A radiochemical enzymatic activity assay for glycerol kinase and hexokinase. Biochim Biophys Acta 132:338–346

    PubMed  CAS  Google Scholar 

  19. Nilsson-Ehle P, Schotz MC (1976) A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res 17:536–541

    PubMed  CAS  Google Scholar 

  20. Brito SC, Festuccia WL, Kawashita NH, Moura MF, Xavier AR, Garófalo MA, Kettelhut IC, Migliorini RH (2006) Increased glyceroneogenesis in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet: role of dietary fatty acids. Metabolism 55:84–89

    Article  PubMed  CAS  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 93:265–275

    Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  23. Folch J, Lees M, Stanley GA (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  24. Sokal RR, Rohlf FJ (1995) Assumptions of analysis of variance. In: Sokal RR, Rohlf FJ (eds) Biometry: the principles and practice of statistics in biological research. WH Freeman and Co, New York, pp 392–450

    Google Scholar 

  25. Taubin HL, Djahanguiri B, Landsberg L (1976) Noradrenaline concentration and turnover in different regions of the gastrointestinal tract of the rat: an approach to the evaluation of sympathetic activity in the gut. Gut 13:790–795

    Article  Google Scholar 

  26. Kyrou I, Tsigos C (2007) Stress mechanisms and metabolic complications. Horm Metab Res 39:430–438

    Article  PubMed  CAS  Google Scholar 

  27. Herbert DC, Carrillo AJ (1982) The hypophyseal-adrenal axis in the protein-calorie malnourished rat. Horm Metab Res 14:205–207

    Article  PubMed  CAS  Google Scholar 

  28. Huang ZL, Fraker PJ (2003) Chronic consumption of a moderately low protein diet does not alter hematopoietic processes in young adult mice. J Nutr 133:1403–1408

    PubMed  CAS  Google Scholar 

  29. Sherry B, Cerami A (1988) Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J Cell Biol 107:1269–1277

    Article  PubMed  CAS  Google Scholar 

  30. Orban Z, Remaley AT, Sampson M, Trajanoski Z, Chrousos GP (1999) The differential effect of food intake and beta-adrenergic stimulation on adipose-derived hormones and cytokines in man. J Clin Endocrinol and Metabolism 84:2126–2133

    Article  CAS  Google Scholar 

  31. Rayner DV (2001) The sympathetic nervous system in white adipose tissue regulation. Proc Nutr Soc 60:357–364

    Article  PubMed  CAS  Google Scholar 

  32. Koizumi M, Yada T (2008) Sub-chronic stimulation of glucocorticoid receptor impairs and mineralocorticoid receptor protects cytosolic Ca2+ responses to glucose in pancreatic beta-cells. J Endocrinol 197:221–229

    Article  PubMed  CAS  Google Scholar 

  33. Chaves VE, Frasson D, Martins-Santos ME, Boschini RP, Garófalo MA, Festuccia WT, Kettelhut IC, Migliorini RH (2006) Glyceroneogenesis is reduced and glucose uptake is increase in adipose tissue from cafeteria diet-fed rats independently of tissue sympathetic innervation. J Nutr 136:2475–2480

    PubMed  CAS  Google Scholar 

  34. Young JB, Weiss J, Boufath N (2004) Effects of dietary monosaccharides on sympathetic nervous system activity in adipose tissues of male rats. Diabetes 53:1271–1278

    Article  PubMed  CAS  Google Scholar 

  35. Kevonian AV, Tuig JGV, Romsos DR (1984) Consumption of a low protein diet increase norepinephrine turnover in brown adipose tissue of adult rats. J Nut 114:543–549

    CAS  Google Scholar 

  36. Stephens JM, Lee J, Pilch PF (1997) Tumor necrosis factor-alpha-induced insulin resistance in 3T3–L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 272:971–976

    Article  PubMed  CAS  Google Scholar 

  37. Hotamisligil GS (1999) Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes 107:119–125

    Article  PubMed  CAS  Google Scholar 

  38. Ye J (2008) Regulation of PPARgamma function by TNF-alpha. Biochem Biophys Res Commun 374:405–408

    Article  PubMed  CAS  Google Scholar 

  39. Sakoda H, Ogihara T, Anai M, Funaki M, Inukai K, Katagiri H, Fukushima Y, Onishi Y, Ono H, Fujishiro M, Kikuchi M, Oka Y, Asano T (2000) Dexamethasone-induced insulin resistance in 3T3–L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 49:1700–1708

    Article  PubMed  CAS  Google Scholar 

  40. Turnbow MA, Keller SR, Rice KM, Garner CW (1994) Dexamethasone down-regulation of insulin receptor substrate-1 in 3T3–L1 adipocytes. J Biol Chem 269:2516–2520

    PubMed  CAS  Google Scholar 

  41. Berthiaume M, Laplante M, Tchernof A, Deshaies Y (2007) Metabolic action of peroxisome proliferator-activated receptor gamma agonism in rats with exogenous hypercorticosteronemia. Int J Obes 31:1660–1670

    Article  CAS  Google Scholar 

  42. Peckett AJ, Wright DC, Riddell MC (2011) The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. doi:10.1016/j.metabol.2011.06.012

  43. Lee MJ, Gong DW, Burkey BF, Fried SK (2011) Pathways regulated by glucocorticoids in omental and subcutaneous human adipose tissues: a microarray study. Am J Physiol Endocrinol Metab 300:E571–E580

    Article  PubMed  CAS  Google Scholar 

  44. Thenen SW, Mayer J (1975) Adipose tissue glycerokinase activity in genetic and acquired obesity in rats and mice. Proc Soc Exp Biol Med 148:953–957

    PubMed  CAS  Google Scholar 

  45. Martin RJ, Lamprey PM (1975) Early development of adipose cell lipogenesis and glycerol utilization in Zucker obese rats. Proc Soc Exp Biol Med 149:35–39

    PubMed  CAS  Google Scholar 

  46. Stern JS, Hirsch J, Drewnowski A, Sullivan AC, Johnson PR, Cohn CK (1983) Glycerol kinase activity in adipose tissue of obese rats and mice: effects of diet composition. J Nutr 113:714–720

    PubMed  CAS  Google Scholar 

  47. Chakrabarty K, Tauber JW, Sigel B, Bombeck CT, Jeffay H (1984) Glycerokinase activity in human adipose tissue as related to obesity. Int J Obes 8:609–622

    PubMed  CAS  Google Scholar 

  48. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W, Kishida K, Inoue K, Kuriyama H, Nakamura T, Fushiki T, Kihara S, Shimomura I (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci 102:10993–10998

    Article  PubMed  CAS  Google Scholar 

  49. Festuccia WT, Guerra-Sá R, Kawashita NH, Garófalo MA, Evangelista EA, Rodrigues V, Kettelhut IC, Migliorini RH (2003) Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. Am J Physiol Regul Integr Comp Physiol 284:R1536–R1541

    PubMed  CAS  Google Scholar 

  50. Chakravarty K, Hanson RW (2007) Insulin regulation of phosphoenolpyruvate carboxykinase-c gene transcription: the role of sterol regulatory element-binding protein 1c. Nutr Rev 65:S47–S56

    Article  PubMed  Google Scholar 

  51. Olswang Y, Blum B, Cassuto H, Cohen H, Biberman Y, Hanson RW, Reshef L (2003) Glucocorticoids repress transcription of phosphoenolpyruvate carboxykinase (GTP) gene in adipocytes by inhibiting its C/EBP-mediated activation. J Biol Chem 278:12929–12936

    Article  PubMed  CAS  Google Scholar 

  52. Brasaemle DL, Subramanian V, Garcia A, Marcinkiewicz A, Rothenberg A (2009) Perilipin A and the control of triacylglycerol metabolism. Mol Cell Biochem 326:15–21

    Article  PubMed  CAS  Google Scholar 

  53. Yamaguchi T (2010) Crucial role of CGI-58/alpha/beta hydrolase domain-containing protein 5 in lipid metabolism. Biol Pharm Bull 33:342–345

    Article  PubMed  CAS  Google Scholar 

  54. Xu C, He J, Jiang H, Zu L, Zhai W, Pu S, Xu G (2009) Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 23:1161–1170

    Article  PubMed  CAS  Google Scholar 

  55. Lacasa D, Agli B, Giudicelli Y (1988) Permissive action of glucocorticoids on catecholamine-induced lipolysis: direct “in vitro” effects on the fat cell beta-adrenoreceptor-coupled-adenylate cyclase system. Biochem Biophys Res Commun 153:489–497

    Article  PubMed  CAS  Google Scholar 

  56. Saltiel AR, Pessin JE (2002) Insulin signaling pathways in time and space. Trends Cell Biol 12:65–71

    Article  PubMed  CAS  Google Scholar 

  57. Rahn Landström T, Mei J, Karlsson M, Manganiello V, Degerman E (2000) Down-regulation of cyclic-nucleotide phosphodiesterase 3B in 3T3–L1 adipocytes induced by tumour necrosis factor alpha and cAMP. Biochem J 346:337–343

    Article  PubMed  Google Scholar 

  58. Rydén M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P (2004) Targets for TNF-alpha-induced lipolysis in human adipocytes. Biochem Biophys Res Commun 318:168–175

    Article  PubMed  Google Scholar 

  59. Laurencikiene J, van Harmelen V, Arvidsson Nordstrom E, Dicker A, Blomqvist L, Näslund E, Langin D, Arner P, Rydén M (2007) NF-kappaB is important for TNF-alpha-induced lipolysis in human adipocytes. J Lipid Res 48:1069–1077

    Article  PubMed  CAS  Google Scholar 

  60. Kim JY, Tillison K, Lee JH, Rearick DA, Smas CM (2006) The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 3T3–L1 adipocytes and is a target for transactivation by PPARgamma. Am J Physiol Endocrinol Metab 291:E115–E127

    Article  PubMed  CAS  Google Scholar 

  61. Bézaire V, Mairal A, Anesia R, Lefort C, Langin D (2009) Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Lett 583:3045–3049

    Article  PubMed  Google Scholar 

  62. Farias-Silva E, dos Santos IN, Corezola do Amaral ME, Grassi-Kassisse DM, Spadari-Bratfisch RC (2004) Glucocorticoid receptor and Beta-adrenoceptor expression in epididymal adipose tissue from stressed rats. Ann N Y Acad Sci 1018:328–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Air Francisco Costa, Marlene Mariano and Celso Roberto Afonso for their technical assistance. We also thank Renato Hélios Migliorini in memoriam for being an exemplary scientist and professor. This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nair H. Kawashita.

About this article

Cite this article

dos Santos, M.P., de França, S.A., dos Santos, J.T.F. et al. A Low-Protein, High-Carbohydrate Diet Increases Fatty Acid Uptake and Reduces Norepinephrine-Induced Lipolysis in Rat Retroperitoneal White Adipose Tissue. Lipids 47, 279–289 (2012). https://doi.org/10.1007/s11745-011-3648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3648-8

Keywords

Navigation