Skip to main content
Log in

Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels

  • Original Article
  • Published:
Lipids

Abstract

Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACBP:

Acyl-CoA binding protein

ARA:

Arachidonic acid

AEA, anandamide:

Arachidonoylethanolamide

2-AG:

2-Arachidonoylglycerol

CB1, Cnr1 :

Cannabinoid receptor-1

CB2, Cnr2 :

Cannabinoid receptor-2

DAGL-α, Dagla :

Diacylglycerol lipase α

DHEA:

Docosahexaenoylethanolamide

EPEA:

Eicosapentaenoylethanolamide

EC:

Endocannabinoid

FAAH, Faah :

Fatty acid amide hydrolase

FABP1, L-FABP:

Liver fatty acid binding protein-1

FABP-3, Fabp3 :

Fatty acid binding protein-3

FABP-5, Fabp5 :

Fatty acid binding protein-5

FABP-7, Fabp7 :

Fatty acid binding protein-7

FAT/CD36:

Fatty acid translocase/thrombospondin receptor

FATP-1:

Fatty acid transport protein-1

FATP-4:

Fatty acid transport protein-4

LKO:

Fabp1 gene ablated mouse on C57BL/6NCr background

GPCR:

G protein coupled receptor

GRK-2, Adrbk2 :

G protein coupled receptor kinase-2

LCFA:

Long chain fatty acid

LCFA-CoA:

Long chain fatty acyl-CoA

2-MG:

2-Monoacylglycerol

MGL, Mgll :

2-Monoacylglycerol lipase

NAAA, Naaa :

N-Acylethanolamide-hydrolyzing acid amidase

NAE:

N-Acylethanolamide

NAPE:

N-Acylphosphatidylethanolamide

NAPE-PLD, Nape-pld :

N-Acylphosphatidylethanolamide phospholipase-D

OEA:

Oleoylethanolamide

2-OG:

2-Oleoylglycerol

PEA:

Palmitoylethanolamide

2-PG:

2-Palmitoyl glycerol

SCP-2, Scp2 :

Sterol carrier protein-2

TRVP-1, vanilloid receptor-1, Trvp-1 :

Transient receptor potential cation channel subfamily V member 1

WT:

Wild-type C57BL/6NCr mouse

References

  1. Muccioli GG (2010) Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today 15:474–483

    Article  CAS  PubMed  Google Scholar 

  2. D’Addario C, Di Francesco A, Pucci M, Agro AF, Maccarrone M (2013) Epigenetic mechanisms and endocannabinoid signaling. FEBS J 280:1905–1917

    Article  PubMed  CAS  Google Scholar 

  3. Mitchell RW, Hatch GM (2011) Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prost Leukot Essen Fatty Acids 85:293–302

    Article  CAS  Google Scholar 

  4. Bazinet RP, Laye S (2014) PUFA and their metabolites in brain function and disease. Nat Rev Neurosci 15:771–785

    Article  CAS  PubMed  Google Scholar 

  5. Havel RJ, Felts JM, Van Duyne CM (1962) Formation and fate of endogenous triglycerides in blood plasma of rabbits. J Lipid Res 3:297–308

    CAS  Google Scholar 

  6. Kohout M, Kohoutova B, Heimberg M (1971) The regulation of hepatic triglyceride metabolism by free fatty acids. J Biol Chem 246:5067–5074

    CAS  PubMed  Google Scholar 

  7. Frolov A, Cho TH, Murphy EJ, Schroeder F (1997) Isoforms of rat liver fatty acid binding protein differ in structure and affinity for fatty acids and fatty acyl CoAs. Biochemistry 36:6545–6555

    Article  CAS  PubMed  Google Scholar 

  8. Murphy EJ, Edmondson RD, Russell DH, Colles SM, Schroeder F (1999) Isolation and characterization of two distinct forms of liver fatty acid binding protein from the rat. Biochim Biophys Acta 1436:413–425

    Article  CAS  PubMed  Google Scholar 

  9. McIntosh AL, Huang H, Atshaves BP, Wellburg E, Kuklev DV, Smith WL, Kier AB, Schroeder F (2010) Fluorescent n-3 and n-6 very long chain polyunsaturated fatty acids: three photon imaging and metabolism in living cells overexpressing liver fatty acid binding protein. J Biol Chem 285:18693–18708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murphy EJ, Prows DR, Jefferson JR, Schroeder F (1996) Liver fatty acid binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Biochim Biophys Acta 1301:191–198

    Article  PubMed  Google Scholar 

  11. Murphy EJ, Prows DR, Jefferson JR, Incerpi S, Hertelendy ZI, Heiliger CE, Schroeder F (1996) Cis-parinaric acid uptake in L-cells. Arch Biochem Biophys 335:267–272

    Article  CAS  PubMed  Google Scholar 

  12. Schroeder F, Jefferson JR, Powell D, Incerpi S, Woodford JK, Colles SM, Myers-Payne S, Emge T, Hubbell T, Moncecchi D, Prows DR, Heyliger CE (1993) Expression of rat L-FABP in mouse fibroblasts: role in fat absorption. Mol Cell Biochem 123:73–83

    Article  CAS  PubMed  Google Scholar 

  13. Owada Y, Abdelwahab SA, Kitanaka N, Sakagami H, Takano H, Sutigani Y, Sugawara M, Kawashima H, Kiso Y, Mobarakeh JI, Yanai K, Kaneko K, Sasaki H, Kato H, Saino-Saito S, Matsumoto N, Akaike N, Noda T, Kondo H (2006) Altered emotional behavioral responses in mice lacking brain type FABP gene. Eur J Neurosci 24:175–187

    Article  PubMed  Google Scholar 

  14. Myers-Payne S, Fontaine RN, Loeffler AL, Pu L, Rao AM, Kier AB, Wood WG, Schroeder F (1996) Effects of chronic ethanol consumption on sterol transfer protein in mouse brain. J Neurochem 66:313–320

    Article  CAS  PubMed  Google Scholar 

  15. Avdulov NA, Chochina SV, Myers-Payne S, Hubbell T, Igbavboa U, Schroeder F, Wood WG (1998) Expression and lipid binding of sterol carrier protein-2 and liver fatty acid binding proteins: differential effects of ethanol in vivo and in vitro. In: Essential Fatty Acids and Eicosanoids: Invited Papers from the Fourth International Congress. (Riemersma, R.A.A.R.K.R.W.a.W.R., ed.), pp 324–327, American Oil Chemists Society Press, Champaign, IL

  16. Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB (2016) Fatty acid binding protein-1 (FABP1) and the human FABP1 T94A variant: roles in the endocannabinoid system and dyslipidemias. Lipids. doi:10.1007/s11745-016-4156-8

    Google Scholar 

  17. Martin G, Chung S, Landrock D, Landrock KK, Huang H, Dangott LJ, Peng X, Kaczocha M, Seeger DR, Murphy EJ, Golovko MY, Kier AB, Schroeder F (2016) FABP1 gene ablation impacts brain endocannabinoid system in male mice. J Neurochem. doi:10.1111/jnc.13664

    Google Scholar 

  18. Craft RM, Marusich JA, Wiley JL (2013) Sex differences in cannabinoid pharmacology: a reflection of differences in endocannabinoid system? Life Sci 92:476–481

    Article  CAS  PubMed  Google Scholar 

  19. Fattore L, Fratta W (2010) Themed issue: cannabinoids review. how important are sex differences in cannabinoid action? Br J Pharmacol 160:544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Llorente R, Llorente-Berzal A, Petrosino S, Marco EM, Guaza C, Prada C, López-Gallardo M, Di Marzo V, Viveros MP (2008) Gender-dependent cellular and biochemical effects of maternal deprivation on the hippocampus of neonatal rats: a possible role for the endocannabinoid system. Develop Neurobiol 68:1334–1347

    Article  CAS  Google Scholar 

  21. Rubino T, Parolaro D (2011) Sexually dimorphic effects of cannabinoid compounds on emotion and cognition. Front Behav Neurosci. doi:10.3389/fnbeh.2011.00064

    PubMed  PubMed Central  Google Scholar 

  22. Rubino T, Parolaro D (2015) Sex-dependent vulnerability to Cannabis abuse in adolescence. Front Behavioral Neurosci 6:1–5

    Google Scholar 

  23. González S, Bisogno T, Wenger T, Manzanares J, Milone A, Berrendero F, Di Marzo V, Ramos JA, Fernández-Ruiz JJ (2000) Sex steroid influence on CB1 receptor mRNA and endocannabinoid levels in anterior pituitary gland. Biochem Biophy Res Commun 270:260–266

    Article  CAS  Google Scholar 

  24. Moreno-Sanz G, Sasso O, Guijarro A, Piomelli D (2012) Pharmacological characterization of the peripheral FAAH inhibitor URB937 in female rodents: interaction with the Abcg2 transporter in the blood-placenta barrier. Br J Pharmacol 167:1620–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Decsi T, Kennedy K (2011) Sex-specific differences in essential fatty acid metabolism. Am J Clin Nutr 94:1914S–1919S

    Article  CAS  PubMed  Google Scholar 

  26. Lohner S, Fekete K, Marosvolgyi T, Desci T (2013) Gender differences in long chain PUFA status: systematic review of 51 publications. Ann Nutr Metab 62:98–112

    Article  CAS  PubMed  Google Scholar 

  27. Martin GG, Danneberg H, Kumar LS, Atshaves BP, Erol E, Bader M, Schroeder F, Binas B (2003) Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid binding protein (L-FABP) gene. J Biol Chem 278:21429–21438

    Article  CAS  PubMed  Google Scholar 

  28. Ellinghaus P, Wolfrum C, Assmann G, Spener F, Seedorf U (1999) Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein-2-/sterol carrier protein x-deficient mice. J Biol Chem 274:2766–2772

    Article  CAS  PubMed  Google Scholar 

  29. Hanhoff T, Benjamin S, Borchers T, Spener F (2005) Branched-chain fatty acids as activators of peroxisome proliferators. Eur J Lip Sci Technol 107:716–729

    Article  CAS  Google Scholar 

  30. Fuchs M, Hafer A, Muench C, Kannenberg F, Teichmann S, Scheibner J, Stange EF, Seedorf U (2001) Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J Biol Chem 276:48058–48065

    CAS  PubMed  Google Scholar 

  31. Hanhoff T, Wolfrum C, Ellinghaus P, Seedorf U, Spener F (2001) Pristanic acid is activator of PPARalpha. Eur J Lipid Sci 103:75–80

    Article  CAS  Google Scholar 

  32. Wolfrum C, Ellinghaus P, Fobker M, Seedorf U, Assmann G, Borchers T, Spener F (1999) Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. J Lipid Res 40:708–714

    CAS  PubMed  Google Scholar 

  33. Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KWA, Wanders RJA, Maeda N, Assmann G (1998) Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thigpen JE, Setchell KD, Ahlmark KB, Kocklear J, Spahr T, Caviness GF, Goelz MF, Haseman JK, Newbold RR, Forsythe DB (1999) Phytoestrogen content of purified, open- and closed-formula laboratory animal diets. Lab An Sci 49:530–536

    CAS  Google Scholar 

  35. Thigpen JE, Setchell KD, Goelz MF, Forsythe DB (1999) The phytoestrogen content of rodent diets. Envron Health Persp 107:A182–A183

    Article  CAS  Google Scholar 

  36. Wang L, Liu J, Harvey-White J, Zimmer A, Kunos G (2003) Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc Natl Acad Sci USA 100:1393–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jian W, Edom R, Weng N, Zannikos P, Zhang Z, Wang H (2010) Validation and application of an LC-MS/MS method for quantitation of three fatty acid ethanolamides as biomarkers for fatty acid hydrolase inhibition in human placenta. J Chrom B 878:1687–1699

    Article  CAS  Google Scholar 

  38. Kaczocha M, Rebecchi MJ, Ralph BP, Teng Y-HG, Berger WT, Galbavy W, Elmes MW, Glaser ST, Wang L, Rizzo RC, Deutsch DG, Ojima I (2014) Inhibition of fatty acid binding protein elevates brain anandamide levels and produces analgesia. PLoS ONE 9:e94200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Atshaves BP, Petrescu A, Starodub O, Roths J, Kier AB, Schroeder F (1999) Expression and intracellular processing of the 58 kDa sterol carrier protein 2/3-Oxoacyl-CoA thiolase in transfected mouse L-cell fibroblasts. J Lipid Res 40:610–622

    CAS  PubMed  Google Scholar 

  40. Martin GG, Atshaves BP, Huang H, McIntosh AL, Williams BW, Pai P-J, Russell DH, Kier AB, Schroeder F (2009) Hepatic phenotype of liver fatty acid binding protein (L-FABP) gene ablated mice. Am J Physiol 297:G1053–G1065

    Article  CAS  Google Scholar 

  41. Chao H, Zhou M, McIntosh A, Schroeder F, Kier AB (2003) Acyl CoA binding protein and cholesterol differentially alter fatty acyl CoA utilization by microsomal acyl CoA: cholesterol transferase. J Lipid Res 44:72–83

    Article  CAS  PubMed  Google Scholar 

  42. Frolov AA, Schroeder F (1998) Acyl coenzyme A binding protein: conformational sensitivity to long chain fatty acyl-CoA. J Biol Chem 273:11049–11055

    Article  CAS  PubMed  Google Scholar 

  43. Matsuura JE, George HJ, Ramachandran N, Alvarez JG, Strauss JFI, Billheimer JT (1993) Expression of the mature and the pro-form of human sterol carrier protein 2 in Escherichia coli alters bacterial lipids. Biochemistry 32:567–572

    Article  CAS  PubMed  Google Scholar 

  44. Martin GG, Hostetler HA, McIntosh AL, Tichy SE, Williams BJ, Russell DH, Berg JM, Spencer TA, Ball JA, Kier AB, Schroeder F (2008) Structure and function of the sterol carrier protein-2 (SCP-2) N-terminal pre-sequence. Biochem 47:5915–5934

    Article  CAS  Google Scholar 

  45. Frolov A, Cho TH, Billheimer JT, Schroeder F (1996) Sterol carrier protein-2, a new fatty acyl coenzyme A-binding protein. J Biol Chem 271:31878–31884

    Article  CAS  PubMed  Google Scholar 

  46. Kaczocha LM, Glaser ST, Deutsch DG (2009) Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci USA 106:6375–6380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaczocha M, Glaser ST, Maher T, Clavin B, Hamilton J, O’Rourke J, Rebecchi M, Puopolo M, Owada Y, Thanos PK (2015) Fatty acid binding protein deletion suppresses inflammatory pain through endocannabinoid/N-acylethanolamine-dependent mechanisms. Mol Pain 11:52. doi:10.1186/s12990-015-0056-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Martin GG, Atshaves BP, Landrock KK, Landrock D, Storey SM, Howles PN, Kier AB, Schroeder F (2014) Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. Am J Physiol Gastrointest Liver Phys 307:G1130–G1143

    Article  CAS  Google Scholar 

  49. Petrescu AD, Huang H, Martin GG, McIntosh AL, Storey SM, Landrock D, Kier AB, Schroeder F (2013) Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARa regulated b-oxidative enzymes. Am J Physiol Gastrointest Liver Phys 304:G241–G256

    Article  CAS  Google Scholar 

  50. Huang H, McIntosh AL, Martin GG, Petrescu AD, Landrock K, Landrock D, Kier AB, Schroeder F (2013) Inhibitors of fatty acid synthesis induce PPARa-regulated fatty acid b-oxidative enzymes: synergistic roles of L-FABP and glucose. PPAR Res 2013:1–22

    Article  CAS  Google Scholar 

  51. Storey SM, McIntosh AL, Huang H, Martin GG, Landrock KK, Landrock D, Payne HR, Kier AB, Schroeder F (2012) Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. Am J Physiol Gastrointest Liver Phys 303:G837–G850

    Article  CAS  Google Scholar 

  52. Storey SM, McIntosh AL, Huang H, Martin GG, Landrock KK, Landrock D, Payne HR, Kier AB, Schroeder F (2012) Intracellular cholesterol binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. Am J Physiol Gastrointest Liver Phys 302:G824–G839

    Article  CAS  Google Scholar 

  53. Atshaves BP, McIntosh AL, Payne HR, Mackie J, Kier AB, Schroeder F (2005) Effect of branched-chain fatty acid on lipid dynamics in mice lacking liver fatty acid binding protein gene. Am J Physiol 288:C543–C558

    Article  CAS  Google Scholar 

  54. Atshaves BP, McIntosh AL, Landrock D, Payne HR, Mackie J, Maeda N, Ball JM, Schroeder F, Kier AB (2007) Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. Am J Physiol 292:939–951

    Google Scholar 

  55. Atshaves BP, McIntosh AL, Martin GG, Landrock D, Payne HR, Bhuvanendran S, Landrock K, Lyuksyutova OI, Johnson JD, Macfarlane RD, Kier AB, Schroeder F (2009) Overexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice. J Lipid Res 50:1429–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Atshaves BP, Payne HR, McIntosh AL, Tichy SE, Russell D, Kier AB, Schroeder F (2004) Sexually dimorphic metabolism of branched chain lipids in C57BL/6 J mice. J Lipid Res 45:812–830

    Article  CAS  PubMed  Google Scholar 

  57. Atshaves BP, McIntosh AL, Payne HR, Gallegos AM, Landrock K, Maeda N, Kier AB, Schroeder F (2007) Sterol carrier protein-2/sterol carrier protein-x gene ablation alters lipid raft domains in primary cultured mouse hepatocytes. J Lipid Res 48:2193–2211

    Article  CAS  PubMed  Google Scholar 

  58. Wood JT, Williams JS, Makriyannis A (2010) Dietary DHA supplementation alters select physiological endocannabinoid system metabolites in brain and plasma. J Lipid Res 51:1416–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Long JZ, Li W, Booker L, Burston JJ, Kinsey SG, Schlosburg JE, Pavón FJ, Serrano AM, Selley DE, Parsons LH, Lichtman AH, Cravatt BF (2009) Selective blockade of 2-arachidonoyl hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5:37–44

    Article  CAS  PubMed  Google Scholar 

  60. Schlosburg JE, Blankman JI, Long JZ, Nomura DK, Pan B, Kinsey SG, Nguyen PT, Ramesh D, Booker L, Burston JJ, Thomas EA, Selley DE, Sim-Selley LJ, Liu QS, Lichtman AH, Cravatt BF (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 13:1113–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ignatowska-Jankowska BM, Ghosh S, Crowe MS, Kinsey SG, Niphakis MJ, Abdullah RA, Tao Q, O’Neal ST, Walentiny DM, Wiley JL, Cravatt BF, Lichtman AH (2014) In vivo characterization of the highly selective inhibitor KML29: antinociceptive activity without cannabimimetic side effects. Br J Pharmacol 171:1392–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nomura DK, Morrison BAE, Blankman JI, Long JZ, Kinsey SG, Marcondes MC, Ward AM, Hahn YK, Lichtman AH, Conti B, Cravatt BF (2011) Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ho WSV, Barrett DAR (2008) Entourage effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxaton to anandamide occur through TRPV1 receptors. Br J Pharmacol 155:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smart D, Jonsson K-O, Vanvoorde S, Lambert DM, Fowler CJ (2002) Entourage effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. Br J Pharmacol 136:452–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Piomelli S, Seaman C (1993) Mechanism of red blood cell aging: relationship of cell density and cell age. Am J Hematol 42:46–52

    Article  CAS  PubMed  Google Scholar 

  66. Franklin A, Parmentier-Batteur S, Walter L, Greenbert DA, Stella N (2003) Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci 23:7767–7775

    CAS  PubMed  Google Scholar 

  67. Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z, Bisogno T, De Petrocellis L, Di Marzo V, Mechoulam R (1998) An entoruage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharm 353:23–31

    Article  CAS  Google Scholar 

  68. Mechoulam R, Fride E, Hanus L, Sheskin T, Bisogno T, Di Marzo V, Bayewitch M, Vogel Z (1997) Anandamide may mediate sleep induction. Nature 389:25–26

    Article  CAS  PubMed  Google Scholar 

  69. Naughton SS, Mathai ML, Hryciw DH, McAinch AJ (2013) Fatty acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int J Endocrinol ID 361895:1–11

    Article  CAS  Google Scholar 

  70. Goparaju SK, Ueda N, Yamaguchi H, Yamamoto S (1989) Anandamide amidohydrolase reacting with 2-AG, another cannabinoid receptor ligand. FEBS Lett 422:69–73

    Article  Google Scholar 

  71. Di Marzo V, Bisogno T, Sugiura T, Melck D, De Petrocellis L (1998) The novel endogenous cannabinoid 2-AG is inactivated by neuronal- and basophil-like cells: connections with anandamide. Biochem J 331:15–19

    Article  PubMed Central  PubMed  Google Scholar 

  72. Blankman JL, Simon GM, Cravatt BF (2007) Comprehensive profile of brain enzymes that hydrolyze endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu S, Levi L, Casadesus G, Kunos G, Noy N (2014) Fatty acid binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator activated receptor b/d (PPARb/d) in the brain. J Biol Chem 289:12748–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murphy EJ, Owada Y, Kitanaka N, Kondo H, Glatz JFC (2005) Brain arachidonic acid incorporation is decreased in heart FABP gene ablated mice. Biochem. 44:6350–6360

    Article  CAS  Google Scholar 

  75. Owada Y (2008) Fatty acid binding protein: localization and functional significance in brain. Tohoku J Exp Med 214:213–220

    Article  CAS  PubMed  Google Scholar 

  76. Moulle VSF, Cansell C, Luquet S, Cruciani-Guglielmacci C (2012) Multiple roles of fatty acid handling proteins in brain. Front Physiol 3:1–6

    Article  Google Scholar 

  77. Elmes MW, Kaczocha M, Berger WT, Leung KN, Ralph BP, Wang L, Sweeney JM, Miyauchi JT, Tsirka SE, Ojima I, Deutsch DG (2015) Fatty acid binding proteins are intracellular carriers for delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem 290:8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaczocha M, Vivieca S, Sun J, Glaser ST, Deutsch DG (2012) Fatty acid binding proteins transport N-acylethanolamines to nuclear receptors and are targets of endocannabinoid transport inhibitors. J Biol Chem 287:3415–3424

    Article  CAS  PubMed  Google Scholar 

  79. Kaczocha M (2009) Role of fatty acid binding proteins and FAAH-2 in endocannabinoid uptake and inactivation., Ph. D. Thesis, Stony Brook University

  80. Frolov A, Miller K, Billheimer JT, Cho T-C, Schroeder F (1997) Lipid specificity and location of the sterol carrier protein-2 fatty acid binding site: a fluorescence displacement and energy transfer study. Lipids 32:1201–1209

    Article  CAS  PubMed  Google Scholar 

  81. Liedhegner ES, Vogt CD, Sem DS, Cunninham CW, Hillard CJ (2014) Sterol carrier protein-2: binding protein for endocannabinoids. Mol Neurobiol 50:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schroeder F, Jolly CA, Cho TH, Frolov AA (1998) Fatty acid binding protein isoforms: structure and function. Chem Phys Lipids 92:1–25

    Article  CAS  PubMed  Google Scholar 

  83. Myers-Payne SC, Hubbell T, Pu L, Schnutgen F, Borchers T, Wood WG, Spener F, Schroeder F (1996) Isolation and characterization of two fatty acid binding proteins from mouse brain. J Neurochem 66:1648–1656

    Article  CAS  PubMed  Google Scholar 

  84. Pu L, Igbavboa U, Wood WG, Roths JB, Kier AB, Spener F, Schroeder F (1999) Expression of Fatty Acid Binding Proteins Is Altered in Aged Mouse Brain. Mol Cell Biochem 198:69–78

    Article  CAS  PubMed  Google Scholar 

  85. Pu L, Annan RS, Carr SA, Frolov A, Wood WG, Spener F, Schroeder F (1999) Isolation and identification of a native fatty acid binding protein form mouse brain. Lipids 34:363–373

    Article  CAS  PubMed  Google Scholar 

  86. Owada Y, Yoshimoto T, Kondo H (1996) Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains. J Chem Neuroanat 12:113–122

    Article  CAS  PubMed  Google Scholar 

  87. Schnutgen F, Borchers T, Muller T, Spener F (1996) Heterologous expression and characterization of mouse brain fatty acid binding protein. Biol Chem Hoppe-Seyler 377:211–215

    Article  CAS  PubMed  Google Scholar 

  88. Bennett E, Stenvers KL, Lund PK, Popko B (1994) Cloning and characterization of a cDNA encoding a novel fatty acid binding protein from rat brain. J Neurochem 63:1616–1624

    Article  CAS  PubMed  Google Scholar 

  89. Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908

    Article  CAS  PubMed  Google Scholar 

  90. Kurtz A, Zimmer A, Schnutgen F, Bruning G, Spener F, Muller T (1994) The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120:2637–2649

    CAS  PubMed  Google Scholar 

  91. Chen CT, Domenichiello AF, Trepanier M-O, Liu Z, Masoodi M, Bazinet RP (2013) Low levels of EPA in rat brain phospholipids are maintained via multiple redundant mechanisms. J Lipid Res 54:2410–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang H, McIntosh AL, Martin GG, Landrock K, Landrock D, Gupta S, Atshaves BP, Kier AB, Schroeder F (2014) Structural and functional interaction of fatty acids with human liver fatty acid binding protein (L-FABP) T94A variant. FEBS J 281:2266–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nemecz G, Hubbell T, Jefferson JR, Lowe JB, Schroeder F (1991) Interaction of fatty acids with recombinant rat intestinal and liver fatty acid-binding proteins. Arch Biochem Biophys 286:300–309

    Article  CAS  PubMed  Google Scholar 

  94. Nemecz G, Jefferson JR, Schroeder F (1991) Polyene fatty acid interactions with recombinant intestinal and liver fatty acid binding proteins. J Biol Chem 266:17112–17123

    CAS  PubMed  Google Scholar 

  95. Prows DR, Murphy EJ, Schroeder F (1995) Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-Cells. Lipids 30:907–910

    Article  CAS  PubMed  Google Scholar 

  96. Murphy EJ (1998) L-FABP and I-FABP expression increase NBD-stearate uptake and cytoplasmic diffusion in L-cells. Am J Physiol 275:G244–G249

    CAS  PubMed  Google Scholar 

  97. McArthur MJ, Atshaves BP, Frolov A, Foxworth WD, Kier AB, Schroeder F (1999) Cellular uptake and intracellular trafficking of long chain fatty acids. J Lipid Res 40:1371–1383

    CAS  PubMed  Google Scholar 

  98. Wolfrum C, Buhlman C, Rolf B, Borchers T, Spener F (1999) Variation of liver fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake. Biochim Biophys Acta 1437:194–201

    Article  CAS  PubMed  Google Scholar 

  99. Mukhopadyay B, Liu J, Osei-Hylaman D, Kunos G (2010) Transcriptional regulation of the cannabinoid receptor-1 expression in the liver by retinoid acid via retinoid acid receptor-g. J Biol Chem 285:19002–19011

    Article  CAS  Google Scholar 

  100. Zhang J, Teng Z, Tang Y-P, Chen C (2014) Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of miR-188-3p in a mouse model of Alzheimer’s disease. J Neurosci 34:1419–1433

    Google Scholar 

  101. Jackson AR, Nagarkatti P, Nagarkatti M (2014) Anandamide attenuates Th-17 cell-mediated delayed type hypersensitivity response by triggering IL-10 production and consequent miRNA induction. PLoS ONE 9:e93954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Morrow FD, Allen CE, Martin RJ (1979) Intracellular fatty acid-binding protein: hepatic levels in lean and obese rats. Fed Proc 38:280

    Google Scholar 

  103. Pignon J-P, Bailey NC, Baraona E, Lieber CS (1987) Fatty acid-binding protein: a major contributor to the ethanol-induced increase in liver cytosolic proteins in the rat. Hepatology 7:865–871

    Article  CAS  PubMed  Google Scholar 

  104. Gyamfi MA, He L, French SW, Damjanov I, Wan Y-JY (2008) Hepatocyte retinoid X receptor alpha-dependent regulation of lipid homeostasis and inflammatory cytokine expression contributes to alcohol-induced liver injury. J Pharm Exp Ther 324:443–453

    Article  CAS  Google Scholar 

  105. Yang SY, He XY, Schulz H (1987) Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J Biol Chem 262:13027–13032

    CAS  PubMed  Google Scholar 

  106. Higuchi N, Kato M, Tanaka M, Miyazaki M, Takao S, Kohjima M, Kotoh K, Enjoji M, Nakamuta M, Takayanagi R (2011) Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP, and L-FABP in non-alcoholic fatty liver disease. Exp Ther Med 2:1077–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Charlton M, Viker K, Krishnan A, Sanderson S, Veldt B, Kaalsbeek AJ, Kendrick M, Thompson G, Que F, Swain J, Sarr M (2009) Differential expression of lumican and fatty acid binding protein-1: new insights into the histologic spectrum of nonalcoholic fatty liver disease. Hepatology 49:1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baumgardner JN, Shankar K, Hennings L, Badger TM, Ronis MJJ (2007) A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high-polyunsaturated fat diet. Am J Physiol Gastrointest Liver Phys 294:G27–G38

    Article  CAS  Google Scholar 

  109. Peng X-E, Wu YL, Lu Q-Q, Ju Z-J, Lin X (2012) Two genetic variants in FABP1 and susceptibility to non-alcoholic fatty liver disease in a Chinese population. Gene 500:54–58

    Article  CAS  PubMed  Google Scholar 

  110. Peng X-E, Wu Y-L, Zhu Y, Huang R-D, Lu Q-Q, Lin X (2015) Association of a human FABP1 gene promoter region polymorphism with altered serum triglyceride levels. PLoS One. doi:10.137/journal.pone.0139417

    Google Scholar 

  111. McIntosh AL, Huang H, Storey SM, Landrock K, Landrock D, Petrescu AD, Gupta S, Atshaves BP, Kier AB, Schroeder F (2014) Human FABP1 T94A variant impacts fatty acid metabolism and PPARa activation in cultured human female hepatocytes. Am J Physiol Gastrointest Liver Phys 307:G164–G176

    Article  CAS  Google Scholar 

  112. Robitaille J, Brouillette C, Lemieux S, Perusse L, Gaudet D, Vohl M-C (2004) Plasma concentrations of apolipoprotein B are modulated by a gene-diet interaction effect between the L-FABP T94A polymorphism and dietary fat intake in French-Canadian men. Mol Gen Metab 82:296–303

    Article  CAS  Google Scholar 

  113. Fisher E, Weikert C, Klapper M, Lindner I, Mohlig M, Spranger J, Boeing H, Schrezenmeir J, Doring F (2007) L-FABP T94A is associated with fasting triglycerides and LDL-cholesterol in women. Mol Gen Metab 91:278–284

    Article  CAS  Google Scholar 

  114. Weikert MO, Loeffelholz CV, Roden M, Chandramouli V, Brehm A, Nowotny P, Osterhoff MA, Isken F, Spranger J, Landau BR, Pfeiffer A, Mohlig M (2007) A Thr94Ala mutation in human liver fatty acid binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. Am J Physiol Endocrinol Metab 293:E1078–E1084

    Article  CAS  Google Scholar 

  115. Yamada Y, Kato K, Oguri M, Yoshida T, Yokoi K, Watanabe S, Metoki N, Yoshida H, Satoh K, Ichihara S, Aoyagi Y, Yasunaga A, Park H, Tanaka M, Nozawa Y (2008) Association of genetic variants with atherothrombotic cerebral infarction in Japanese individuals with metabolic syndrome. Int J Mol Med 21:801–808

    CAS  PubMed  Google Scholar 

  116. Bu L, Salto LM, De Leon KJ, De Leon M (2011) Polymorphisms in fatty acid binding protein 5 show association with type 2 diabetes. Diabetes Res Clin Prac 92:82–91

    Article  CAS  Google Scholar 

  117. Mansego ML, Martinez F, Martinez-Larrad MT, Zabena C, Rojo G, Morcillo S, Soriguer F, Martin-Escudero JC, Serrano-Rios M, Redon J, Chaves FJ (2012) Common variants of the liver fatty acid binding protein gene influence the risk of Type 2 Diabetes and insulin resistance in Spanish population. PLoS ONE 7:e31853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Okifuji A, Hare BD (2015) The association between chronic pain and obesity. J Pain Res 8:399–408

    Article  PubMed  PubMed Central  Google Scholar 

  119. Janke EA, Collins A, Kozak AT (2007) Overview of the relationship between pain and obesity: what do we know? Where do we go next? J Rehab Res Dev 44:245–262

    Article  Google Scholar 

  120. McKendall MJ, Haier RJ (1983) Pain sensitivity and obesity. Psychiatry Res 8:119–125

    Article  CAS  PubMed  Google Scholar 

  121. Jackson P, Gleeson D (2010) Alcoholic liver disease. Cont Ed Anaesth Crit Care Pain 10:66–71

    Article  Google Scholar 

  122. Bouneva I, Abou-Assi S, Heuman DM, Mihas AA (2003) Alcoholic liver disease. Hospital Physician 31–38

  123. Kneeman JM, Misdraji J, Corey KC (2012) Secondary causes of nonalcoholic liver disease. Ther Adv Gastroenterol 5:199–207

    Article  Google Scholar 

  124. Alswat KA (2015) The role of endocannabinoid system in fatty liver disease and therapeutic potential. Saudi J Gastroenterol 19:144–151

    Article  Google Scholar 

  125. Maccarrone M, Gasperi V, Catani MV, Diep TI, Dainese E, Hansen HS, Avigliano L (2010) The endocannabinoid system and its relevance to nutrition. Annu Rev Nutr 30:423–440

    Article  CAS  PubMed  Google Scholar 

  126. Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA, Rehfeld JF, Andersen UB, Holst JJ, Hansen HS (2011) 2-oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab 96:E1409–E1417

    Article  CAS  PubMed  Google Scholar 

  127. Atshaves BP, McIntosh AL, Kier AB, Schroeder F (2010) High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene ablated mice. Lipids 45:97–110

    Article  CAS  PubMed  Google Scholar 

  128. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F (2008) Liver fatty acid binding protein gene ablated female mice exhibit increased age dependent obesity. J Nutr 138:1859–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F (2009) Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice. Mol Cell Biochem 324:101–115

    Article  CAS  PubMed  Google Scholar 

  130. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F (2005) Liver fatty acid binding protein (L-FABP) gene ablation alters liver bile acid metabolism in male mice. Biochem J 391:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F (2006) Liver fatty acid binding protein (L-FABP) gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice. Am J Physiol 290:G36–G48

    CAS  Google Scholar 

  132. McIntosh AL, Atshaves BP, Landrock D, Landrock KK, Martin GG, Storey SM, Kier AB, Schroeder F (2013) Liver fatty acid binding protein gene-ablation exacerbates weight gain in high fat fed female mice. Lipids 48:435–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work presented herein was supported in part by the US Public Health Service/National Institutes of Health Grant R25 OD016574 (S.C., A.B.K.), Merial Veterinary Scholars Program, CVM (S.C., A.B.K.), and DA035949 (M.K.). The authors acknowledge ThermoFisher Scientific for use of the Exactive Orbitrap mass spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Schroeder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, G.G., Chung, S., Landrock, D. et al. Female Mice are Resistant to Fabp1 Gene Ablation-Induced Alterations in Brain Endocannabinoid Levels. Lipids 51, 1007–1020 (2016). https://doi.org/10.1007/s11745-016-4175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4175-4

Keywords

Navigation