Skip to main content
Log in

Improved Butanol–Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples

  • Methods
  • Published:
Lipids

Abstract

Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol–methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh–Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4-HA:

4-Hydroxyalkenal

4-HNE:

4-Hydroxy-2E-nonenal

BUME:

Butanol–methanol

Cer:

Ceramide

CerPCho:

Sphingomyelin

ChoGpl:

Choline glycerophospholipids

ESI:

Electrospray ionization

EtAc:

Ethyl acetate

EtnGpl:

Ethanolamine glycerophospholipids

Fmoc:

Fluorenylmethyloxycarbonyl

HPLC:

High performance liquid chromatography

lysoPtdCho:

Lyso phosphatidylglycerol

lysoPtdEtn:

Lyso phosphatidylethanolamine

IS:

Internal standard

MS:

Mass spectrometry

MTBE:

Methyl-tert-butyl ether

nESI:

Nano-electrospray ionization

NLS:

Neutral loss scan

PlsEtn:

Ethanolamine plasmalogen

PlsCho:

Choline plasmalogen

PBS:

Phosphate-buffered saline

Ptd2Gro:

Cardiolipin

PtdCho:

Phosphatidylcholine

PtdEtn:

Phosphatidylethanolamine

PtdGro:

Phosphatidylglycerol

PtdIns:

Phosphatidylinositol

PtdOH:

Phosphatidic acid

PtdSer:

Phosphatidylserine

TAG:

Triacylglycerol(s)

References

  1. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  PubMed  Google Scholar 

  2. Watson AD (2006) Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 47:2101–2111

    Article  CAS  PubMed  Google Scholar 

  3. Wang M, Han X (2016) Advanced shotgun lipidomics for characterization of altered lipid patterns in neurodegenerative diseases and brain injury. Methods Mol Biol 1303:405–422

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xie P, Kadegowda AK, Ma Y, Guo F, Han X, Wang M, Groban L, Xue B, Shi H, Li H, Yu L (2015) Muscle-specific deletion of comparative gene identification-58 (CGI-58) causes muscle steatosis but improves insulin sensitivity in male mice. Endocrinology 156:1648–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J, Wang M, Han X, Asher G (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19:319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spener F, Lagarde M, Geloen A, Record M (2003) What is lipidomics? Eur J Lipid Sci Technol 105:481–482

    Article  Google Scholar 

  7. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44:1071–1079

    Article  CAS  PubMed  Google Scholar 

  8. Roberts LD, McCombie G, Titman CM, Griffin JL (2008) A matter of fat: an introduction to lipidomic profiling methods. J Chromatogr B Anal Technol Biomed Life Sci 871:174–181

    Article  CAS  Google Scholar 

  9. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  11. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  12. Jung HR, Sylvanne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K (2011) High throughput quantitative molecular lipidomics. Biochim Biophys Acta 1811:925–934

    Article  CAS  PubMed  Google Scholar 

  13. Heiskanen LA, Suoniemi M, Ta HX, Tarasov K, Ekroos K (2013) Long-term performance and stability of molecular shotgun lipidomic analysis of human plasma samples. Anal Chem 85:8757–8763

    Article  CAS  PubMed  Google Scholar 

  14. Schmid P, Calvert, J. and Steiner, R. (1973) Physiol Chem Phys 5

  15. Cham BE, Knowles BR (1976) A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res 17:176–181

    CAS  PubMed  Google Scholar 

  16. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Z, Xu Y (2010) An extremely simple method for extraction of lysophospholipids and phospholipids from blood samples. J Lipid Res 51:652–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lofgren L, Stahlman M, Forsberg GB, Saarinen S, Nilsson R, Hansson GI (2012) The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res 53:1690–1700

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang M, Han X (2014) Multidimensional mass spectrometry-based shotgun lipidomics. Methods Mol Biol 1198:203–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang M, Fang H, Han X (2012) Shotgun lipidomics analysis of 4-hydroxyalkenal species directly from lipid extracts after one-step in situ derivatization. Anal Chem 84:4580–4586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  CAS  PubMed  Google Scholar 

  23. Gorgas K, Teigler A, Komljenovic D, Just WW (2006) The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochim Biophys Acta 1763:1511–1526

    Article  CAS  PubMed  Google Scholar 

  24. Moser AB, Steinberg SJ, Watkins PA, Moser HW, Ramaswamy K, Siegmund KD, Lee DR, Ely JJ, Ryder OA, Hacia JG (2011) Human and great ape red blood cells differ in plasmalogen levels and composition. Lipids Health Dis 10:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang M, Hayakawa J, Yang K, Han X (2014) Characterization and quantification of diacylglycerol species in biological extracts after one-step derivatization: a shotgun lipidomics approach. Anal Chem 86:2146–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang K, Zhao Z, Gross RW, Han X (2009) Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J Chromatogr B Anal Technol Biomed Life Sci 877:2924–2936

    Article  CAS  Google Scholar 

  27. Hsu FF, Turk J (1999) Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:600–612

    Article  CAS  PubMed  Google Scholar 

  28. Hsu FF, Turk J (1999) Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 10:587–599

    Article  CAS  PubMed  Google Scholar 

  29. Han X, Yang K, Cheng H, Fikes KN, Gross RW (2005) Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization. J Lipid Res 46:1548–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zarkovic N, Zarkovic K, Schaur RJR, Stolc S, Schlag GN, Redl H, Waeg G, Borovic S, Loncaric I, Juric G, Hlavka V (1999) 4-Hydroxynonenal as a second messenger of free radicals and growth modifying factor. Life Sci 65:1901–1904

    Article  CAS  PubMed  Google Scholar 

  31. Poli G, Schaur RJ (2000) 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life 50:315–321

    Article  CAS  PubMed  Google Scholar 

  32. Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28:1685–1696

    Article  CAS  PubMed  Google Scholar 

  33. Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Wang C, Han X (2016) Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry—what, how and why? Mass Spectrom Rev. doi:10.1002/mas.21492

  35. Wang C, Wang M, Han X (2015) Comprehensive and quantitative analysis of lysophospholipid molecular species present in obese mouse liver by shotgun lipidomics. Anal Chem 87:4879–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powell WS (1982) Rapid extraction of arachidonic acid metabolites from biological samples using octadecylsilyl silica. Methods Enzymol 86:467–477

    Article  CAS  PubMed  Google Scholar 

  37. Jiang X, Han X (2006) Characterization and direct quantitation of sphingoid base-1-phosphates from lipid extracts: a shotgun lipidomics approach. J Lipid Res 47:1865–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cai T, Shu Q, Hou J, Liu P, Niu L, Guo X, Liu CC, Yang F (2015) Profiling and relative quantitation of phosphoinositides by multiple precursor ion scanning based on phosphate methylation and isotopic labeling. Anal Chem 87:513–521

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Institute of General Medical Sciences Grant R01 GM105724 and intramural institutional research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlin Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, M., Wang, M., Frisch-Daiello, J. et al. Improved Butanol–Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples. Lipids 51, 887–896 (2016). https://doi.org/10.1007/s11745-016-4164-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4164-7

Keywords

Navigation