Skip to main content
Log in

Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells

  • Original Article
  • Published:
Lipids

Abstract

Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L-02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L-02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L-02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator-activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein-1c (SREBP-1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L-02 cells by upregulating SREBP-1c expression through the suppression of PPARα.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

FFA:

Free fatty acids

PPARα:

Proliferator-activated receptor alpha

SREBP-1c:

Sterol regulatory element binding protein-1c

LDH:

Lactate dehydrogenase

ROS:

Reactive oxygen species

GSH:

Glutathione

SOD:

Superoxide dismutase

DCFH-DA:

2′-7′-Dichlorofluorescein diacetate

References

  1. Hesham AH (2009) Nonalcoholic fatty liver disease in children living in the obeseogenic society. World J Pediatr 5:245–254

    Article  Google Scholar 

  2. Trauner M, Arrese M, Wagner M (2010) Fatty liver and lipotoxicity. Biochim Biophys Acta 1801:299–310

    Article  CAS  PubMed  Google Scholar 

  3. Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. El-Zayadi AR (2008) Hepatic steatosis: a benign disease or a silent killer. World J Gastroenterol 14:4120–4126

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gomez-Lechon MJ, Donato MT, Castell JV, Jover R (2004) Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab 5:443–462

    Article  CAS  PubMed  Google Scholar 

  6. Gaens KH, Niessen PM, Rensen SS, Buurman WA, Greve JW, Driessen A, Wolfs MG, Hofker MH, Bloemen JG, Dejong CH, Stehouwer CD, Schalkwijk CG (2012) Endogenous formation of N epsilon-(carboxymethyl) lysine is increased in fatty livers and induces inflammatory markers in an in vitro model of hepatic steatosis. J Hepatol 56:647–655

    Article  CAS  PubMed  Google Scholar 

  7. Jiang P, Huang Z, Zhao H, Wei T (2013) Hydrogen peroxide impairs autophagic flux in a cell model of nonalcoholic fatty liver disease. Biochem Biophys Res Commun 433:408–414

    Article  CAS  PubMed  Google Scholar 

  8. Malhi H, Bronk SF, Werneburg NW, Gores GJ (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281:12093–12101

    Article  CAS  PubMed  Google Scholar 

  9. Vidyashankar S, Sharath KL, Barooah V, Sandeep VR, Nandakumar KS, Patki PS (2012) Liv. 52 up-regulates cellular antioxidants and increase glucose uptake to circumvent oleic acid induced hepatic steatosis in HepG2 cells. Phytomedicine 19:1156–1165

    Article  CAS  PubMed  Google Scholar 

  10. Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499

    Article  CAS  PubMed  Google Scholar 

  11. Byrne CD (2010) Fatty liver: role of inflammation and fatty acid nutrition. Prostaglandins Leukot Essent Fat Acids 82:265–271

    Article  CAS  Google Scholar 

  12. Shi LJ, Shi L, Song GY, Zhang HF, Hu ZJ, Wang C, Zhang DH (2013) Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparalpha). Eur J Pharmacol 714:89–95

    Article  CAS  PubMed  Google Scholar 

  13. Tailleux A, Wouters K, Staels B (2012) Roles of PPARs in NAFLD: potential therapeutic targets. Biochim Biophys Acta 1821:809–818

    Article  CAS  PubMed  Google Scholar 

  14. Zheng L, Lv GC, Sheng J, Yang YD (2010) Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-alpha expression, a novel mechanism for the pathogenesis of NAFLD. J Gastroenterol Hepatol 25:156–163

    Article  CAS  PubMed  Google Scholar 

  15. Ferre P, Foufelle F (2010) Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 12(Suppl 2):83–92

    Article  CAS  PubMed  Google Scholar 

  16. Granado-Serrano AB, Martin MA, Izquierdo-Pulido M, Goya L, Bravo L, Ramos S (2007) Molecular mechanisms of (-)-epicatechin and chlorogenic acid on the regulation of the apoptotic and survival/proliferation pathways in a human hepatoma cell line. J Agric Food Chem 55:2020–2027

    Article  CAS  PubMed  Google Scholar 

  17. Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH (2009) Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun 380:644–649

    Article  CAS  PubMed  Google Scholar 

  18. Petta S, Muratore C, Craxi A (2009) Non-alcoholic fatty liver disease pathogenesis: the present and the future. Digest Liver Dis 41:615–625

    Article  CAS  Google Scholar 

  19. Vidyashankar S, Sandeep VR, Patki PS (2013) Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicol In Vitro 27:945–953

    Article  CAS  PubMed  Google Scholar 

  20. Vitaglione P, Morisco F, Caporaso N, Fogliano V (2004) Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr 44:575–586

    Article  CAS  PubMed  Google Scholar 

  21. Adachi M, Ishii H (2002) Role of mitochondria in alcoholic liver injury. Free Radic Biol Med 32:487–491

    Article  CAS  PubMed  Google Scholar 

  22. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  23. Qiao Y, Xiang Q, Yuan L, Xu L, Liu Z, Liu X (2013) Herbacetin induces apoptosis in HepG2 cells: involvements of ROS and PI3K/Akt pathway. Food Chem Toxicol 51:426–433

    Article  CAS  PubMed  Google Scholar 

  24. Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L (2009) Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl) 87:679–695

    Article  CAS  Google Scholar 

  25. Leung TM, Nieto N (2013) CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J Hepatol 58:395–398

    Article  CAS  PubMed  Google Scholar 

  26. Shin JW, Wang JH, Kim HG, Park HJ, Bok HS, Son CG (2010) CGX, a traditional Korean medicine ameliorates concanavalin A-induced acute liver injury. Food Chem Toxicol 48:3308–3315

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez FJ, Shah YM (2008) PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology 246:2–8

    Article  CAS  PubMed  Google Scholar 

  28. Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61:393–416

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed MH, Byrne CD (2007) Modulation of sterol regulatory element binding proteins (SREBPs) as potential treatments for non-alcoholic fatty liver disease (NAFLD). Drug Discov Today 12:740–747

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez-Alvarez A, Alvarez MS, Gonzalez R, Cucarella C, Muntane J, Casado M (2011) Human SREBP1c expression in liver is directly regulated by peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 286:21466–21477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ziamajidi N, Khaghani S, Hassanzadeh G, Vardasbi S, Ahmadian S, Nowrouzi A, Ghaffari SM, Abdirad A (2013) Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARalpha and SREBP-1. Food Chem Toxicol 58:198–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Natural Science Foundation of China (No. 81274160), the Natural Science Foundation of Guangdong Province (No. S2012010009380) and the Science and Technology Development project of Guangdong province (No. 2010B060900056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keer Huang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Yin, J. & Huang, K. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells. Lipids 51, 797–805 (2016). https://doi.org/10.1007/s11745-016-4160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4160-y

Keywords

Navigation