Skip to main content
Log in

Molecular mechanisms involved in NAFLD progression

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is an emerging metabolic-related disorder characterized by fatty infiltration of the liver in the absence of alcohol consumption. NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), which might progress to end-stage liver disease. This progression is related to the insulin resistance, which is strongly linked to the metabolic syndrome consisting of central obesity, diabetes mellitus, and hypertension. Earlier, the increased concentration of intracellular fatty acids within hepatocytes leads to steatosis. Subsequently, multifactorial complex interactions between nutritional factors, lifestyle, and genetic determinants promote necrosis, inflammation, fibrosis, and hepatocellular damage. Up to now, many studies have revealed the mechanism associated with insulin resistance, whereas the mechanisms related to the molecular components have been incompletely characterized. This review aims to assess the potential molecular mediators initiating and supporting the progression of NASH to establish precocious diagnosis and to plan more specific treatment for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    PubMed  CAS  Google Scholar 

  2. Brunt EM (2001) Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 21:3–16

    PubMed  CAS  Google Scholar 

  3. Tarantino G, Conca P, Basile V, Gentile A, Capone D, Polichetti G, Leo E (2007) A prospective study of acute drug-induced liver injury in patients suffering from non-alcoholic fatty liver disease. Hepatol Res 37:410–415

    PubMed  CAS  Google Scholar 

  4. Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S, McClain C (2007) Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18:184–195

    PubMed  CAS  Google Scholar 

  5. Adams LA, Feldstein A, Lindor KD, Angulo P (2004) Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology 39:909–914

    PubMed  Google Scholar 

  6. Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS (2007) Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132:1947–1954

    PubMed  CAS  Google Scholar 

  7. Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R (2002) NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 35:373–379

    PubMed  CAS  Google Scholar 

  8. Koruk M, Savas MC, Yilmaz O, Taysi S, Karakok M, Gündoğdu C, Yilmaz A (2003) Serum lipids, lipoproteins and apolipoproteins levels in patients with nonalcoholic steatohepatitis. J Clin Gastroenterol 37:177–182

    PubMed  CAS  Google Scholar 

  9. McCullough AJ (2006) Pathophysiology of nonalcoholic steatohepatitis. J Clin Gastroenterol 40:S17–29

    PubMed  CAS  Google Scholar 

  10. Clark JM (2006) The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 40:S5–S10

    PubMed  Google Scholar 

  11. Day CP (2006) From fat to inflammation. Gastroenterology 130:207–210

    PubMed  CAS  Google Scholar 

  12. Lalor PF, Faint J, Aarbodem Y, Hubscher SG, Adams DH (2007) The role of cytokines and chemokines in the development of steatohepatitis. Semin Liver Dis 27:173–193

    PubMed  CAS  Google Scholar 

  13. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17:4–12

    PubMed  CAS  Google Scholar 

  14. George J, Liddle C (2008) Nonalcoholic fatty liver disease: pathogenesis and potential for nuclear receptors as therapeutic targets. Mol Pharm 5:49–59

    PubMed  CAS  Google Scholar 

  15. Lu S, Archer MC (2007) Celecoxib decreases fatty acid synthase expression via down-regulation of c-Jun N-terminal kinase-1. Exp Biol Med (Maywood) 232:643–653

    CAS  Google Scholar 

  16. Schattenberg JM, Singh R, Wang Y, Lefkowitch JH, Rigoli RM, Scherer PE, Czaja MJ (2006) JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 43:163–172

    PubMed  CAS  Google Scholar 

  17. Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1–28

    PubMed  CAS  Google Scholar 

  18. Diehl AM (2005) Lessons from animal models of NASH. Hepatol Res 33:138–144

    PubMed  CAS  Google Scholar 

  19. Garcia-Ruiz C, Fernandez-Checa JC (2006) Mitochondrial glutathione: hepatocellular survival–death switch. J Gastroenterol Hepatol 21(Suppl 3):S3–S6

    PubMed  CAS  Google Scholar 

  20. Bugianesi E, McCullough AJ, Marchesini G (2005) Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 42:987–1000

    PubMed  CAS  Google Scholar 

  21. Charlton M, Sreekumar R, Rasmussen D, Lindor K, Nair KS (2002) Apolipoprotein synthesis in nonalcoholic steatohepatitis. Hepatology 35:898–904

    PubMed  CAS  Google Scholar 

  22. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V (2005) Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 48:634–642

    PubMed  CAS  Google Scholar 

  23. Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943

    PubMed  CAS  Google Scholar 

  24. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–422

    PubMed  CAS  Google Scholar 

  25. Rother KI, Imai Y, Caruso M, Beguinot F, Formisano P, Accili D (1998) Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J Biol Chem 273:17491–17497

    PubMed  CAS  Google Scholar 

  26. Saltiel A, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    PubMed  CAS  Google Scholar 

  27. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R (2001) Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J 15:2099–2111

    PubMed  CAS  Google Scholar 

  28. Herschkovitz A, Liu YF, Ilan E, Ronen D, Boura-Halfon S, Zick Y (2007) Common inhibitory serine sites phosphorylated by IRS-1 kinases, triggered by insulin and inducers of insulin resistance. J Biol Chem 282:18018–18127

    PubMed  CAS  Google Scholar 

  29. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 277:48115–48121

    PubMed  CAS  Google Scholar 

  30. Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902

    PubMed  CAS  Google Scholar 

  31. Greene MW, Ruhoff MS, Roth RA, Kim JA, Quon MJ, Krause JA (2006) PKC delta-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function. Biochem Biophys Res Commun 349:976–986

    PubMed  CAS  Google Scholar 

  32. Liu HY, Collins QF, Xiong Y, Moukdar F, Lupo EG, Liu Z, Cao W (2007) Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. J Biol Chem 282:14205–14212

    PubMed  CAS  Google Scholar 

  33. Lee J, Kim MS (2007) The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract 77(Suppl 1):S49–S57

    PubMed  CAS  Google Scholar 

  34. Svegliati-Baroni G, Ridolfi F, Di Sario A, Casini A, Marucci L, Gaggiotti G, Orlandoni P (1999) Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology 29:1743–1751

    PubMed  CAS  Google Scholar 

  35. Lam TK, Yoshii H, Haber CA, Bogdanovic E, Lam L, Fantus IG, Giacca A (2002) Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab 283:E682–E691

    PubMed  CAS  Google Scholar 

  36. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    PubMed  CAS  Google Scholar 

  37. Agarwal N, Sharma BC (2005) Insulin resistance and clinical aspects of non-alcoholic steatohepatitis (NASH). Hepatol Res 33:92–96

    PubMed  CAS  Google Scholar 

  38. Nguyen MT, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J (2005) JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 280:35361–35371

    PubMed  CAS  Google Scholar 

  39. Ghanim H, Aljada A, Daoud N, Deopurkar R, Chaudhuri A, Dandona P (2007) Role of inflammatory mediators in the suppression of insulin receptor phosphorylation in circulating mononuclear cells of obese subjects. Diabetologia 50:278–285

    PubMed  CAS  Google Scholar 

  40. Schattenberg JM, Wang Y, Singh R, Rigoli RM, Czaja MJ (2005) Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signalling. J Biol Chem 280:9887–9894

    PubMed  CAS  Google Scholar 

  41. Prada PO, Zecchin HG, Gasparetti AL, Torsoni MA, Ueno M, Hirata AE, Corezola do Amaral ME et al (2005) Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology 146:1576–1587

    PubMed  CAS  Google Scholar 

  42. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198

    PubMed  CAS  Google Scholar 

  43. Sakurai T, Maeda S, Chang L, Karin M (2006) Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci U S A 103:10544–10551

    PubMed  CAS  Google Scholar 

  44. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11:183–190

    PubMed  CAS  Google Scholar 

  45. Valenti L, Rametta R, Dongiovanni P, Maggioni M, Fracanzani AL, Zappa M, Lattuada E (2008) Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 57:1355–1362

    PubMed  CAS  Google Scholar 

  46. Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver. Cell Metab 6:208–216

    PubMed  CAS  Google Scholar 

  47. Sekine K, Chen YR, Kojima N, Ogata K, Fukamizu A, Miyajima A (2007) Foxo1 links insulin signaling to C/EBPalpha and regulates gluconeogenesis during liver development. EMBO J 26:3607–3615

    PubMed  CAS  Google Scholar 

  48. Duong DT, Waltner-Law ME, Sears R, Sealy L, Granner DK (2002) Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 277:32234–32242

    PubMed  CAS  Google Scholar 

  49. Samuel VT, Choi CS, Phillips TG, Romanelli AJ, Geisler JG, Bhanot S, McKay R (2006) Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55:2042–2050

    PubMed  CAS  Google Scholar 

  50. Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280:20589–20595

    PubMed  CAS  Google Scholar 

  51. Nakae J, Cao Y, Daitoku H, Fukamizu A, Ogawa W, Yano Y, Hayashi Y (2006) The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J Clin Invest 116:2473–2483

    PubMed  CAS  Google Scholar 

  52. Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase dependent regulation of the orphan nuclear receptor SHP. Diabetes 57:306–314

    PubMed  CAS  Google Scholar 

  53. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    PubMed  CAS  Google Scholar 

  54. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109:1125–1131

    PubMed  CAS  Google Scholar 

  55. Shimomura I, Bashmakov Y, Horton JD (1999) Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 274:30028–30032

    PubMed  CAS  Google Scholar 

  56. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100:12027–12032

    PubMed  CAS  Google Scholar 

  57. Ueki K, Kadowaki T, Kahn CR (2005) Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res 33:185–192

    PubMed  CAS  Google Scholar 

  58. Abu-Elheiga L, Brinkley WR, Zhong L, Chirala SS, Woldegiorgis G, Wakil SJ (2000) The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci U S A 97:1444–1449

    PubMed  CAS  Google Scholar 

  59. Abu-Elheiga L, Matzuk MM, Abo-Hashema KAH, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616

    PubMed  CAS  Google Scholar 

  60. Abu-Elheig L, Oh W, Kordari P, Wakil SJ (2003) Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A 100:10207–10212

    Google Scholar 

  61. Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98:9116–9121

    PubMed  CAS  Google Scholar 

  62. Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K (2002) Mechanism for fatty acid “sparing” effect on glucose-induced transcription. Regulation of carbohydrate responsive element-binding protein by Amp-activated protein kinase. J Biol Chem 277:3829–3835

    PubMed  CAS  Google Scholar 

  63. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K (2004) Deficiency of carbohydrate response element binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 101:7281–7286

    PubMed  CAS  Google Scholar 

  64. Svegliati-Baroni G, Candelaresi C, Saccomanno S, Ferretti G, Bachetti T, Marzioni M, De Minicis S (2006) A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol 169:846–860

    PubMed  CAS  Google Scholar 

  65. Schadinger SE, Bucher NL, Schreiber BM, Farmer SR (2005) PPAR gamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 288:E1195–E1205

    PubMed  CAS  Google Scholar 

  66. Kim JB, Wright HM, Wright M, Spiegelman BM (1998) ADD1/SREBP-1 activates PPAR gamma through the production of endogenous ligand. Proc Natl Acad Sci U S A 95:4333–4337

    PubMed  CAS  Google Scholar 

  67. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC (1999) Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 19:5495–5503

    PubMed  CAS  Google Scholar 

  68. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278:34268–34276

    PubMed  CAS  Google Scholar 

  69. Tanaka T, Masuzaki H, Nakao K (2005) Role of PPARs in the pathophysiology of nonalcoholic fatty liver disease. Nippon Rinsho 63:700–706

    PubMed  Google Scholar 

  70. LeBoeuf RC, Caldwell M, Guo Y, Metz C, Davitz MA, Olson LK, Deeg MA (1998) Mouse glycosylphosphatidylinositol-specific phospholipase D (Gpld1) characterization. Mamm Genome 9:710–714

    PubMed  CAS  Google Scholar 

  71. Deeg MA, Bierman EL, Cheung MC (2001) GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J Lipid Res 42:442–451

    PubMed  CAS  Google Scholar 

  72. Chalasani N, Vuppalanchi R, Raikwar NS, Deeg MA (2006) Glycosylphosphatidylinositol specific phospholipase d in nonalcoholic Fatty liver disease: a preliminary study. J Clin Endocrinol Metab 91:2279–2285

    PubMed  CAS  Google Scholar 

  73. Nakamuta M, Kohjima M, Morizono S, Kotoh K, Yoshimoto T, Miyagi I, Enjoji M (2005) Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 16:631–635

    PubMed  CAS  Google Scholar 

  74. Motomura W, Inoue M, Ohtake T, Takahashi N, Nagamine M, Tanno S, Kohgo Y (2006) Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun 340:1111–1118

    PubMed  CAS  Google Scholar 

  75. Wang SM, Hwang RD, Greenberg AS, Yeo HL (2003) Temporal and spatial assembly of lipid droplet-associated proteins in 3T3–L1 preadipocytes. Histochem Cell Biol 120:285–292

    PubMed  CAS  Google Scholar 

  76. Gao J, Serrero G (1999) Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 274:16825–16830

    PubMed  CAS  Google Scholar 

  77. Imai Y, Varela GM, Jackson MB, Graham MJ, Crooke RM, Ahima RS (2007) Reduction of hepatosteatosis and lipid levels by an adipose differentiation-related protein antisense oligonucleotide. Gastroenterology 132:1947–1954

    PubMed  CAS  Google Scholar 

  78. Raabe M, Veniant MM, Sullivan MA, Zlot CH, Björkegren J, Nielsen LB, Wong JS, Hamilton RL, Young SG (1999) Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest 103:1287–1298

    PubMed  CAS  Google Scholar 

  79. Namikawa C, Shu-Ping Z, Vyselaar JR, Nozaki Y, Nemoto Y, Ono M, Akisawa N, Saibara T, Hiroi M, Enzan H, Onishi S (2004) Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in nonalcoholic steatohepatitis. J Hepatol 40:781–786

    PubMed  CAS  Google Scholar 

  80. Navasa M, Gordon DA, Hariharan N, Jamil H, Shigenaga JK, Moser A, Fiers W, Pollock A, Grunfeld C, Feingold KR (1998) Regulation of microsomal triglyceride transfer protein mRNA expression by endotoxin and cytokines. J Lipid Res 39:1220–1230

    PubMed  CAS  Google Scholar 

  81. Song J, da Costa KA, Fischer LM, Kohlmeier M, Kwock L, Wang S, Zeisel SH (2005) Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J 19:1266–1271

    PubMed  CAS  Google Scholar 

  82. Dong H, Wang J, Li C, Hirose A, Nozaki Y, Takahashi M, Ono M, Akisawa N, Iwasaki S, Saibara T, Onishi S (2007) The phosphatidylethanolamine N-methyltransferase gene V175M single nucleotide polymorphism confers the susceptibility to NASH in Japanese population. J Hepatol 46:915–920

    PubMed  CAS  Google Scholar 

  83. Malaguarnera L, Di Rosa M, Zambito AM, Dell'Ombra N, Nicoletti F, Malaguarnera M (2006) Chitotriosidase gene expression in Kupffer cells of non-alcoholic fatty liver disease patients. GUT 55:1313–1320

    PubMed  CAS  Google Scholar 

  84. Malaguarnera L, Di Rosa M, Zambito AM, Dell’Ombra N, Di Marco R, Malaguarnera M (2006) Potential role of chitotriosidase gene in nonalcoholic fatty liver disease evolution. Am J Gastroenterol 101:2060–2069

    PubMed  CAS  Google Scholar 

  85. Malaguarnera L (2006) Chitotriosidase: the yin and yang. Cell Mol Life Sci 63:3018–3029

    PubMed  CAS  Google Scholar 

  86. Boot RG, van Achterberg TA, van Aken BE, Renkema GH, Jacobs MJ, Aerts JM, de Vries CJ (1999) Strong induction of members of the chitinase family of proteins in atherosclerosis: chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. Arterioscler Thromb Vasc Biol 19:687–694

    PubMed  CAS  Google Scholar 

  87. Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26:1175–1186, Dec

    Google Scholar 

  88. Di Rosa M, Musumeci M, Scuto A, Musumeci S, Malaguarnera L (2005) Effect of interferon-gamma, interleukin 10, lipopolysaccharide and tumor necrosis factor-alpha on chitotriosidase synthesis in human macrophages. Clin Chem Lab Med 43:499–502

    PubMed  Google Scholar 

  89. Varki A (1996) Does DG42 synthesize hyaluronan or chitin? A controversy about oligosaccharides in vertebrate development. Proc Natl Acad Sci U S A 93:4523–4525

    PubMed  CAS  Google Scholar 

  90. Friedman SL (1990) Cellular sources of collagen and regulation of collagen production in liver. Semin Liver Dis 10:20–29

    PubMed  CAS  Google Scholar 

  91. Bedossa P, Houglum K, Trautwein C, Holstege A, Chojkier M (1994) Stimulation of collagen a1 (I) gene expression is associated with lipid peroxidation in hepatocellular injury: a link to tissue fibrosis? Hepatology 19:1262–1271

    PubMed  CAS  Google Scholar 

  92. Videla LA, Rodrigo R, Orellana M, Fernandez V, Tapia G, Quiñones L, Varela N, Contreras J, Lazarte R, Csendes A, Rojas J, Maluenda F, Burdiles P, Diaz JC, Smok G, Thielemann L, Poniachik J (2004) Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci 106:261–268

    PubMed  CAS  Google Scholar 

  93. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192

    PubMed  CAS  Google Scholar 

  94. Robertson G, Leclercq I, Farrell GC (2001) Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 281:G1135–1139

    PubMed  CAS  Google Scholar 

  95. Pessayre D, Berson A, Fromenty B, Mansouri A (2001) Mitochondria in steatohepatitis. Semin Liver Dis 21:57–69

    PubMed  CAS  Google Scholar 

  96. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR (2000) CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 105:1067–1075

    PubMed  CAS  Google Scholar 

  97. Chavin KD, Yang S, Lin HZ, Chatham J, Chacko VP, Hoek JB, Walajtys-Rode E, Rashid A, Chen CH, Huang CC, Wu TC, Lane MD, Diehl AM (1999) Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J Biol Chem 274:5692–5700

    PubMed  CAS  Google Scholar 

  98. Fernandez-Checa JC, Kaplowitz N, Garcia-Ruiz C, Colell A (1998) Mitochondrial glutathione: importance and transport. Semin Liver Dis 18:389–401

    PubMed  CAS  Google Scholar 

  99. Tirmenstein MA, Nicholls-Grzemski FA, Zhang JG, Fariss MW (2000) Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. Chem Biol Interact 127:201–217

    PubMed  CAS  Google Scholar 

  100. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W (1992) Cytotoxic activity of TNF is mediated by early damage of mitochondrial functions. J Biol Chem 267:5317–532

    PubMed  CAS  Google Scholar 

  101. Schwabe RF, Brenner DA (2006) Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290:G583–589

    PubMed  CAS  Google Scholar 

  102. Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogel S, Dargel R, Poli G (1997) The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor β1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J 11:851–857

    PubMed  CAS  Google Scholar 

  103. Ribeiro PS, Cortez-Pinto H, Solá S, Castro RE, Ramalho RM, Baptista A, Moura MC, Camilo ME, Rodrigues CM (2004) Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol 9:1708–1717

    Google Scholar 

  104. Xu Z, Chen L, Leung L, Yen TS, Lee C, Chan JY (2005) Liver-specific inactivation of the Nrf1 gene in adult mouse leads to nonalcoholic steatohepatitis and hepatic neoplasia. Proc Natl Acad Sci U S A 102:4120–4125

    PubMed  CAS  Google Scholar 

  105. Maurizio P, Novo E (2005) Nrf1 gene expression in the liver: a single gene linking oxidative stress to NAFLD, NASH and hepatic tumours. J Hepatol 43:1096–1097

    PubMed  Google Scholar 

  106. Baskol G, Baskol M, Kocer D (2007) Oxidative stress and antioxidant defenses in serum of patients with non-alcoholic steatohepatitis. Clin Biochem 40:776–780

    PubMed  CAS  Google Scholar 

  107. Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase: implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273:15639–15645

    PubMed  CAS  Google Scholar 

  108. Lickteig AJ, Fisher CD, Augustine LM, Cherrington NJ (2007) Genes of the antioxidant response undergo upregulation in a rodent model of nonalcoholic steatohepatitis. J Biochem Mol Toxicol 21:216–220

    PubMed  CAS  Google Scholar 

  109. Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M (2005) Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol 42:585–591

    PubMed  CAS  Google Scholar 

  110. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. Fed Am Soc Exp Biol J 2:2557–2568

    CAS  Google Scholar 

  111. Wunder C, Potter RF (2003) The heme oxygenase system: its role in liver inflammation. Curr Drug Targets Cardiovasc Haematol Disord 3:199–208

    PubMed  CAS  Google Scholar 

  112. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    PubMed  CAS  Google Scholar 

  113. Malaguarnera L, Imbesi R, Di Rosa M, Scuto A, Castrogiovanni P, Messina A, Sanfilippo S (2005) Action of prolactin, IFN-gamma, TNF-alpha and LPS on heme oxygenase-1 expression and VEGF release in human monocytes/macrophages. Int Immunopharmacol 5:1458–69

    PubMed  CAS  Google Scholar 

  114. Malaguarnera L, Pilastro MR, Quan S, Ghattas MH, Yang L, Mezentsev AV, Kushida T, Abraham NG, Kappas A (2002) Significance of heme oxygenase in prolactin-mediated cell proliferation and angiogenesis in human endothelial cells. Int J Mol Med 10:433–440

    PubMed  CAS  Google Scholar 

  115. Suematsu M, Ishimura Y (2000) The heme oxygenase-carbon monoxide system: a regulator of hepatobiliary function. Hepatology 31:3–6

    PubMed  CAS  Google Scholar 

  116. Blendis L, Oren R, Halpern Z (2000) NASH: can we iron out the pathogenesis? Gastroenterology 118:981–983

    PubMed  CAS  Google Scholar 

  117. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A et al (1996) A novel MHC class l-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    PubMed  CAS  Google Scholar 

  118. Bugianesi E, Manzini P, D’Antico S, Vanni E, Longo F, Leone N, Massarenti P, Piga A, Marchesini G, Rizzetto M (2004) Relative contribution of iron burden, HFE mutations and insulin resistance to fibrosis in nonalcoholic fatty liver. Hepatology 3:179–187

    Google Scholar 

  119. Chitturi S, Weltman M, Farrell GC, McDonald D, Kench J, Liddle C, Samarasinghe D, Lin R, Abeygunasekera S, George J (2002) HFE mutations, hepatic iron, and fibrosis: ethnic specific association of NASH with C282Y but not with fibrotic severity. Hepatology 36:142–149

    PubMed  CAS  Google Scholar 

  120. Weltman MD, Farrell GC, Hall P, Ingelman-Sundberg M, Liddle C (1998) Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 27:128–133

    PubMed  CAS  Google Scholar 

  121. Wu D, Cederbaum A (2007) Cytochrome P4502E1 sensitizes to tumor necrosis factor alpha-induced liver injury through activation of mitogen-activated protein kinases in mice. Hepatology 19:223–228

    Google Scholar 

  122. Jimenez-Lopez JM, Cederbaum AI (2005) Protein kinase C signaling as a survival pathway against CYP2E1-derived oxidative stress and toxicity in HepG2 cells. J Pharmacol Exp Ther 312:998–1006

    PubMed  CAS  Google Scholar 

  123. Choi SS, Sicklick JK, Ma Q, Yang L, Huang J, Qi Y, Chen W, Li YX, Goldschmidt-Clermont PJ, Diehl AM (2006) Sustained activation of Rac1 in hepatic stellate cells promotes liver injury and fibrosis in mice. Hepatology 44:1267–77

    PubMed  CAS  Google Scholar 

  124. Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Takayanagi R, Nakamuta M (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20:351–358

    PubMed  CAS  Google Scholar 

  125. Rao MS, Reddy JK (2001) Peroxisomal beta-oxidation and steatohepatitis. Semin Liver Dis 21:43–55

    PubMed  CAS  Google Scholar 

  126. Duce AM, Ortiz P, Cabrero C, Mato JM (1998) S-adenosyl-l-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology 8:865–68

    Google Scholar 

  127. Bianchi G, Brizi M, Rossi B, Ronchi M, Grossi G, Marchesini G (2000) Synthesis of glutathione in response to methionine load in control subjects and in patients with cirrhosis. Metabolism 49:1434–1439

    PubMed  CAS  Google Scholar 

  128. Song Z, Zhou Z, Uriarte S, Wang L, Kang YJ, Chen T, Barve S, McClain CJ (2004) S-adenosylhomocysteine sensitizes to TNF-alpha hepatotoxicity in mice and liver cells: a possible etiological factor in alcoholic liver disease. Hepatology 40:989–997

    PubMed  Google Scholar 

  129. Sanchez-Gongora E, Ruiz F, Mingorance J, An W, Corrales FJ, Mato JM (1997) Interaction of liver methionine adenosyltransferase with hydroxyl radical. FASEB J 11:1013–1019

    PubMed  CAS  Google Scholar 

  130. Lu SC, Alvarez L, Huang ZZ, Chen L, An W, Corrales FJ, Avila MA, Mato JM (2001) Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci U S A 98:5560–5565

    PubMed  CAS  Google Scholar 

  131. Schwahn B, Rozen R (2001) Polymorphisms in the methylenetetrahydro-folate reductase gene: clinical consequences. Am J Pharmacogenomics 1:189–201

    PubMed  CAS  Google Scholar 

  132. Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L (2007) Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med 13:298–309

    PubMed  CAS  Google Scholar 

  133. Balas B, Belfort R, Harrison SA, Darland C, Finch J, Schenker S, Gastaldelli A, Cusi K (2007) Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis. J Hepatol. 47:565–570

    PubMed  CAS  Google Scholar 

  134. Vuppalanchi R, Chalasani N (2009) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management. Hepatology 49:306–317

    PubMed  Google Scholar 

  135. Ratziu V, Giral P, Jacqueminet S, Charlotte F, Hartemann-Heurtier A, Serfaty L, Podevin P, Lacorte JM, Bernhardt C, Bruckert E, Grimaldi A, Poynard T, LIDO Study Group (2008) Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 135:100–110

    PubMed  CAS  Google Scholar 

  136. Caldwell SH, Patrie JT, Brunt EM, Redick JA, Davis CA, Park SH, Neuschwander-Tetri BA (2007) The effects of 48 weeks of rosiglitazone on hepatocyte mitochondria in human nonalcoholic steatohepatitis. Hepatology 46:1101–7

    PubMed  CAS  Google Scholar 

  137. Lutchman G, Modi A, Kleiner DE, Promrat K, Heller T, Ghany M, Borg B, Loomba R, Liang TJ, Premkumar A, Hoofnagle JH (2007) The effects of discontinuing pioglitazone in patients with non-alcoholic steatohepatitis. Hepatology 46:424–429

    PubMed  CAS  Google Scholar 

  138. Kumar N, Dey CS (2002) Metformin enhances insulin signalling in insulin-dependent and-independent pathways in insulin resistant muscle cells. Br J Pharmacol 137:329–336

    PubMed  CAS  Google Scholar 

  139. Duseja A, Das A, Dhiman RK, Chawla YK, Thumburu KT, Bhadada S, Bhansali A (2007) Metformin is effective in achieving biochemical response in patients with nonalcoholic fatty liver disease (NAFLD) not responding to lifestyle interventions. Ann Hepatol 6:222–226

    PubMed  CAS  Google Scholar 

  140. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed  CAS  Google Scholar 

  141. Kadayifci A, Merriman RB, Bass NM (2007) Medical treatment of non-alcoholic steatohepatitis. Clin Liver Dis 11:119–1140

    PubMed  Google Scholar 

  142. Neve BP, Corseaux D, Chinetti G, Zawadzki C, Fruchart JC, Duriez P, Staels B, Jude B (2001) PPAR alpha agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation 103:207–212

    PubMed  CAS  Google Scholar 

  143. Perkins JD (2006) Saying “Yes” to obese living liver donors: short-term intensive treatment for donors with hepatic steatosis in living-donor liver transplantation. Liver Transpl 12:1012–1013

    PubMed  Google Scholar 

  144. Nakano S, Inada Y, Masuzaki H, Tanaka T, Yasue S, Ishii T, Arai N, Ebihara K, Hosoda K, Maruyama K et al (2007) Bezafibrate regulates the expression and enzyme activity of 11beta-hydroxysteroid dehydrogenase type 1 in murine adipose tissue and 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 292:E1213–E1222

    PubMed  CAS  Google Scholar 

  145. Onofrei MD, Butler KL, Fuke DC, Miller HB (2008) Safety of statin therapy in patients with preexisting liver disease. Pharmacotherapy 28:522–529

    PubMed  CAS  Google Scholar 

  146. Ekstedt M, Franzén LE, Mathiesen UL, Holmqvist M, Bodemar G, Kechagias S (2007) Statins in non-alcoholic fatty liver disease and chronically elevated liver enzymes: a histopathological follow-up study. J Hepatol 47:135–141

    PubMed  CAS  Google Scholar 

  147. Habara K, Hamada Y, Yamada M, Tokuhara K, Tanaka H, Kaibori M, Kamiyama Y, Nishizawa M, Ito S, Okumura T (2008) Pitavastatin up-regulates the induction of iNOS through enhanced stabilization of its mRNA in pro-inflammatory cytokine-stimulated hepatocytes. Nitric Oxide 18:19–27

    PubMed  CAS  Google Scholar 

  148. Lalli CA, Pauli JR, Prada PO, Cintra DE, Ropelle ER, Velloso LA, Saad MJ (2008) Statin modulates insulin signaling and insulin resistance in liver and muscle of rats fed a high-fat diet. Metabolism 57:57–65

    PubMed  CAS  Google Scholar 

  149. Kadayifci A, Merriman RB, Bass NM (2007) Medical treatment of non-alcoholic steatohepatitis. Clin Liver Dis 11:119–140

    PubMed  Google Scholar 

  150. Yakaryilmaz F, Guliter S, Savas B, Erdem O, Ersoy R, Erden E, Akyol G, Bozkaya H, Ozenirler S (2007) Effects of vitamin E treatment on peroxisome proliferator-activated receptor-alpha expression and insulin resistance in patients with non-alcoholic steatohepatitis: results of a pilot study. Intern Med J 37:229–235

    PubMed  CAS  Google Scholar 

  151. Loguercio C, Federico A, Trappoliere M, Tuccillo C, de Sio I, Di Leva A, Niosi M, D'Auria MV, Capasso R, Del Vecchio Blanco C, Real Sud Group (2007) The effect of a silybin-vitamin e-phospholipid complex on nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci 52:2387–2395

    PubMed  CAS  Google Scholar 

  152. Di Sario A, Bendia E, Taffetani S, Omenetti A, Candelaresi C, Marzioni M, De Minicis S, Benedetti A (2005) Hepatoprotective and antifibrotic effect of a new silybin–phosphatidylcholine–vitamin E complex in rats. Dig Liver Dis 37:869–876

    PubMed  Google Scholar 

  153. Le Foll C, Corporeau C, Le Guen V, Gouygou JP, Bergé JP, Delarue J (2007) Long-chain n−3 polyunsaturated fatty acids dissociate phosphorylation of Akt from phosphatidylinositol 3′-kinase activity in rats. Am J Physiol Endocrinol Metab 292:E1223–E1230

    PubMed  Google Scholar 

  154. Pamuk GE, Sonsuz A (2003) N-acetylcysteine in the treatment of non-alcoholic steatohepatitis. J Gastroenterol Hepatol 18:1220–1221

    PubMed  Google Scholar 

  155. Oz HS, Im HJ, Chen TS, de Villiers WJ, McClain CJ (2006) Glutathione-enhancing agents protect against steatohepatitis in a dietary model. J Biochem Mol Toxicol 20:39–47

    PubMed  CAS  Google Scholar 

  156. Portincasa P, Grattagliano I, Palmieri VO, Palasciano G (2006) Current pharmacological treatment of nonalcoholic fatty liver. Curr Med Chem 13:2889–2900

    PubMed  CAS  Google Scholar 

  157. Lenoir-Wijnkoop I, Sanders ME, Cabana MD, Caglar E, Corthier G, Rayes N, Sherman PM, Timmerman HM, Vaneechoutte M, Van Loo J, Wolvers DA (2007) Probiotic and prebiotic influence beyond the intestinal tract. Nutr Rev 65:469–489

    PubMed  Google Scholar 

  158. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, Song XY, Diehl AM (2003) Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37:343–350

    PubMed  CAS  Google Scholar 

  159. Loguercio C, Federico A, Tuccillo C, Terracciano F, D’Auria MV, De Simone C, Del Vecchio Blanco C (2005) Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol 39:540–543

    PubMed  Google Scholar 

  160. Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI (2007) Inhibition of protein kinase C epsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 117:739–745

    PubMed  CAS  Google Scholar 

  161. Mordier S, Iynedjian PB (2007) Activation of mammalian target of rapamycin complex 1 and insulin resistance induced by palmitate in hepatocytes. Biochem Biophys Res Commun 362:206–211

    PubMed  CAS  Google Scholar 

  162. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45:1366–1374

    PubMed  CAS  Google Scholar 

  163. Zu L, Jiang H, He J, Xu C, Pu S, Liu M, Xu G (2008) Salicylate blocks lipolytic actions of tumor necrosis factor-a in primary rat adipocytes. Mol Pharmacol 73:215–223

    PubMed  CAS  Google Scholar 

  164. Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J (2003) Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem 278:24944–24950

    PubMed  CAS  Google Scholar 

  165. Lappas M, Yee K, Permezel M, Rice GE (2005) Sulfasalazine and BAY 11–7082 interfere with the nuclear factor-kappa B and I kappa B kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology 146:1491–1497

    PubMed  CAS  Google Scholar 

  166. Han MS, Park SY, Shinzawa K, Kim S, Chung KW, Lee JH, Kwon CH, Lee KW, Lee JH, Park CK et al (2008) Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res 49:84–97

    PubMed  CAS  Google Scholar 

  167. Martinez SC, Tanabe K, Cras-Meneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA (2008) Inhibition of Foxo1 protects pancreatic islet β-cells against fatty acid and ER-stress induced apoptosis. Diabetes 57:846–859

    PubMed  CAS  Google Scholar 

  168. Warner FJ, Lubel JS, McCaughan GW, Angus PW (2007) Liver fibrosis: a balance of ACEs? Clin Sci (Lond) 113:109–118

    Article  CAS  Google Scholar 

  169. Fujita K, Yoneda M, Wada K, Mawatari H, Takahashi H, Kirikoshi H, Inamori M, Nozaki Y, Maeyama S, Saito S et al (2007) Telmisartan, an angiotensin II type 1 receptor blocker, controls progress of nonalcoholic steatohepatitis in rats. Dig Dis Sci 52:3455–3464

    PubMed  CAS  Google Scholar 

  170. Wright MC (2006) The impact of pregnane X receptor activation on liver fibrosis. Biochem Soc Trans 34:1119–1123

    PubMed  CAS  Google Scholar 

  171. Zhao C, Chen W, Yang L, Chen L, Stimpson SA, Diehl AM (2006) PPAR gamma agonists prevent TGFbeta1/smad3-signaling in human hepatic stellate cells. Biochem Biophys Res Commun 350:385–391

    PubMed  CAS  Google Scholar 

  172. Hui Y, Yu-Yuan L, Yu-Qiang N, Wei-Hong S, Yan-Lei D, Xiao-Bo L, Yong-Jian Z (2008) Effect of peroxisome proliferator-activated receptors-gamma and coactivator-1alpha genetic polymorphisms on plasma adiponectin levels and susceptibility of non-alcoholic fatty liver disease in Chinese people. Liver Int 28:385–392

    PubMed  Google Scholar 

  173. Kawanishi M, Tamori Y, Okazawa H, Araki S, Shinoda H, Kasuga M (2000) Role of SNAP23 in insulin-induced translocation of GLUT4 in 3T3-L1 adipocytes. Mediation of complex formation between Syntaxin4 and VAMP2. J Biol Chem 275:8240–8247

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Ministry of Health.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Malaguarnera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malaguarnera, M., Di Rosa, M., Nicoletti, F. et al. Molecular mechanisms involved in NAFLD progression. J Mol Med 87, 679–695 (2009). https://doi.org/10.1007/s00109-009-0464-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0464-1

Keywords

Navigation