Skip to main content
Log in

Cinnamomum camphora Seed Kernel Oil Improves Lipid Metabolism and Enhances β3-Adrenergic Receptor Expression in Diet-Induced Obese Rats

  • Original Article
  • Published:
Lipids

Abstract

The effects of dietary Cinnamomum camphora seed kernel oil (CCSKO) containing medium-chain triacylglycerols on lipid metabolism and mRNA and protein expression of β-3 adrenergic receptor in adipose tissue were studied in diet-induced obese rats. High fat food-induced obese rats were randomly divided into CCSKO group, Lard group, Soybean oil (SOY) group and naturally restoring group (n = 10). Rats fed with low fat food were used as a normal control group. Significant decreases in body mass and abdominal fat mass/body mass after 12 weeks were found in CCSKO group as compared with Lard and SOY groups (p < 0.05). Levels of blood total cholesterol (TC), triglyceride, free fatty acid, fasting insulin and insulin resistance in the CCSKO group were decreased significantly, and noradrenaline level and insulin sensitivity index in the CCSKO group were significantly higher than other groups. Meanwhile liver TC and triglyceride levels in the CCSKO group were also decreased markedly. Expression levels of β3-adrenergic receptor mRNA and protein were higher in CCSKO group than in Lard and SOY groups. These results suggest that CCSKO may contribute to reduction of the body fat mass, promote lipid metabolism and up-regulate β3-adrenergic receptor expression in high fat diet-induced obese rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCSKO:

Cinnamomum camphora seed kernel oil

β3-AR:

Beta-3 adrenergic receptor

BMI:

Body mass index

ELISA:

Enzyme-linked immunosorbent assay

FBG:

Fasting blood glucose

FFA:

Free fatty acid

ISI:

Insulin sensitivity index

HDL-C:

High density lipoprotein cholesterol

HOMA-IR:

Homeostatic model assessment of insulin resistance

LDL-C:

Low density lipoprotein cholesterol

MCFA:

Medium-chain fatty acid

MCT:

Medium-chain triglyceride

TC:

Total cholesterol

References

  1. Haslam DW, James WPT (2005) Obesity. Lancet 366:1197–1209

    Article  PubMed  Google Scholar 

  2. Chen YH, Wang XS, Shen ZN, Fan P, Liu R, Liu Y, Ren RM, Ma L, Bai H (2015) Effect of the beta-3 adrenergic receptor Trp64Arg and uncoupling protein 1–3826 A > G genotypes on lipid and apolipoprotein levels in overweight/obese and non-obese Chinese subjects. Lipids Health Dis 14:34

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3:589–600

    CAS  PubMed  Google Scholar 

  4. Granneman JG (2005) Metabolic and cellular plasticity in white adipose tissue I: effects of 3-adrenergic receptor activation. Am J Physiol-Endoc M 289:E608–E616

    CAS  Google Scholar 

  5. Buzelle SL, MacPherson RE, Peppler WT, Castellani L, Wright DC (2015) The contribution of IL-6 to beta 3 adrenergic receptor mediated adipose tissue remodeling. Physiol Rep 3:e12312

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuo NW, Tung KY, Tsai CH, Chen YC, Lee YL (2014) Beta3-adrenergic receptor gene modifies the association between childhood obesity and asthma. J Allergy Clin Immun 134:731–733

    Article  CAS  PubMed  Google Scholar 

  7. Gauthier C, Rozec B, Manoury B, Balligand J (2011) Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep 8:184–192

    Article  CAS  PubMed  Google Scholar 

  8. Ghorbani M, Ardestani MS, Gigloo SH, Cohan RA, Inanlou DN, Ghorbani P (2012) Anti diabetic effect of CL 316,243 (A b3-Adrenergic Agonist) by down regulation of tumour necrosis factor (TNF-a) expression. PLoS One 7:e45874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zeng ZL, Shi YY, Liang LJ, Peng C (2008) Esterification and trans esterification of camphor tree seed oil continuously catalyzed by concentrated sulphuric acid. J Nanchang Univ (Nat Sci) 32:575–579

    Google Scholar 

  10. Zhao ML, Hu JN, Zhu XM, Li HY, Li J, Fan YW, Deng ZY (2014) Enzymatic synthesis of medium-and long-chain triacylglycerols-enriched structured lipid from Cinnamomum camphora seed oil and camellia oil by Lipozyme RM IM. Int J Food Sci Technol 49:453–459

    Article  CAS  Google Scholar 

  11. Zhou W, Zhang B, Deng DW (2004) Oil extraction from camphor tree seed. China Oils Fats 29:30–31

    CAS  Google Scholar 

  12. Ji SX, Wei F, Hu N, Lv X, Dong XY, Chen H, Feng YQ (2014) Advances on analysis of triacylglycerols in plant oils based on chromatography methods. J Instrum Anal 33:112–118

    CAS  Google Scholar 

  13. Ferreira L, Lisenko K, Barros B, Zangeronimo M, Pereira L, Sousa R (2014) Influence of medium-chain triglycerides on consumption and weight gain in rats: a systematic review. J Anim Physiol N 98:1–8

    Article  CAS  Google Scholar 

  14. Liu WL, Liu W, Liu CM, Yang SB, Liu JH, Zheng HJ, Su KM (2011) Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice. Brit J Nutr 106:1330–1336

    Article  CAS  PubMed  Google Scholar 

  15. Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K (2001) Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J Nutr 131:2853–2859

    CAS  PubMed  Google Scholar 

  16. Fu J, Wang BG, Gong D, Zeng C, Jiang YH, Zeng ZL (2015) Camphor tree seed kernel oil reduces body fat deposition and improves blood lipids in rats. J Food Sci 80:H1912–H1917

    Article  CAS  PubMed  Google Scholar 

  17. Sarkozy M, Zvara A, Gyemant N, Fekete V, Kocsis GF, Pipis J, Szucs G, Csonka C, Puskas LG, Ferdinandy P et al (2013) Metabolic syndrome influences cardiac gene expression pattern at the transcript level in male ZDF rats. Cardiovasc Diabetol 12:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li GW, Bennett PH (2005) Regarding the reverse of the product of fasting plasma glucose and insulin levels—additional remarks of an insulin sensitivity index used in epidemiological study. Chin J Diabetes 13:247–249

    Google Scholar 

  19. Ooyama K, Wu J, Nosaka N, Aoyama T, Kasai M (2008) Combined intervention of medium-chain triacylglycerol diet and exercise reduces body fat mass enhances energy expenditure in rats. J Nutr Sci Vitaminol 54:136–141

    Article  CAS  PubMed  Google Scholar 

  20. Tucci S, Flogel U, Sturm M, Borsch E, Spiekerkoetter U (2011) Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a β-oxidation defect. Am J Clin Nutr 94:439–449

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Xu Q, Liu YH, Zhang XS, Wang J, Yu XM, Zhang RX, Xue C, Yang XY, Xue CY (2015) Medium-chain triglyceride activated brown adipose tissue and induced reduction of fat mass in C57BL/6J mice fed high-fat diet. Biomed Environ Sci 28:97–104

    PubMed  Google Scholar 

  22. Xue C, Liu Y, Wang J, Zhang R, Zhang Y, Zhang J, Zhang Y, Zheng Z, Yu X, Jing H et al (2009) Consumption of medium- and long-chain triacylglycerols decreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur J Clin Nutr 63:879–886

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi H, Kasai M, Taguchi N, Tsuji H, Suzuki M (2002) Effect of triacylglycerols containing medium- and long-chain fatty acids on serum triacylglycerol levels and body fat in college athletes. J Nutr Sci Vitaminol 48:109–114

    Article  CAS  PubMed  Google Scholar 

  24. Tuyama AC, Chang CY (2012) Non-alcoholic fatty liver disease. J Diabetes 4:266–280

    Article  CAS  PubMed  Google Scholar 

  25. Ma ZS, Zhang L, Liu T, Xing LJ, Ji G (2010) Effect of Jiangzhi Granule on blood serum ALT, AST and TG, TC level of liver tissues in mice with fatty liver due to tetracycline. Henan Tradit Chin Med 30:1169–1171

    Google Scholar 

  26. Sowers JR, Frohlich ED (2004) Insulin and insulin resistance. Med Clin N Am 88:63–82

    Article  CAS  PubMed  Google Scholar 

  27. Kovacs P, Stumvoll M (2005) Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol 19:625–635

    Article  CAS  Google Scholar 

  28. Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction. Eur J Clin Invest 32:14–23

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Zhang Y, Xu Q, Yu X, Zhang X, Wang J, Xue C, Yang X, Zhang R, Xue C (2012) Increased norepinephrine by medium-chain triglyceride attributable to lipolysis in white and brown adipose tissue of C57BL/6J mice. Biosci Biotechnol Biochem 76:1213–1218

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Xue C, Zhang Y, Xu Q, Yu X, Zhang X, Wang J, Zhang R, Gong X, Guo C (2011) Triglyceride with medium-chain fatty acids increases the activity and expression of hormone-sensitive lipase in white adipose tissue of C57BL/6J mice. Biosci Biotechnol Biochem 75:1939–1944

    Article  CAS  PubMed  Google Scholar 

  31. Geng SS, Zhu WW, Xie CF, Li X, Wu J, Liang Z, Xie W, Zhu J, Huang C, Zhu M et al (2016) Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice. Eur J Nutr 55:931–940

    Article  CAS  PubMed  Google Scholar 

  32. Jimenez M, Léger B, Canola K, Lehr L, Arboit P, Seydoux J, Russell AP, Giacobino J, Muzzin P, Preitner F (2002) β 1/β 2/β 3-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett 530:37–40

    Article  CAS  PubMed  Google Scholar 

  33. Fu L, Isobe K, Zeng Q, Suzukawa K, Takekoshi K, Kawakami Y (2008) The effects of β3-adrenoceptor agonist CL-316,243 on adiponectin, adiponectin receptors and tumor necrosis factor-α expressions in adipose tissues of obese diabetic KKAy mice. Eur J Pharmacol 584:202–206

    Article  CAS  PubMed  Google Scholar 

  34. Coman OA, Paunescu H, Ghita I, Coman L, Badararu A, Fulga I (2009) Beta 3 adrenergic receptors: molecular, histological, functional and pharmacological approaches. Rom J Morphol Embryo 50:169–179

    Google Scholar 

  35. Collins S, Cao W, Robidoux J (2004) Learning new tricks from old dogs: β-adrenergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 18:2123–2131

    Article  CAS  PubMed  Google Scholar 

  36. Miyoshi H, Perfield JW, Souza SC, Shen WJ, Zhang HH, Stancheva ZS, Kraemer FB, Obin MS, Greenberg AS (2007) Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase a-stimulated lipolysis in adipocytes. J Biol Chem 282:996–1002

    Article  CAS  PubMed  Google Scholar 

  37. Ai F, Bin J, Zhang Z, Huang J, Wang J, Liang Y, Yu L, Yang Z (2014) Application of random forests to select premium quality vegetable oils by their fatty acid composition. Food Chem 143:472–478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the International Science and Technology Cooperation Program of China (Project No. 2011DFA32770), the International Science and Technology Cooperation Program of Jiangxi Province (Project No. 20112BDH80004 and 20123BDH80011), the International Science and Technology Cooperation Program of Nanchang City (Project No. 211-DWHZ-SWYY-001), the Science and Technology Program of Jiangxi Education Department (Project No. KJLD12012), the Science and Technology Program of Jiangxi Province (Project No. 20143ACG70015) and the Research Program of State Key Laboratory of Food Science and Technology, Nanchang University (Project No. SKLF-ZZA-201303, SKLF-ZZB-201517, SKLF-ZZA-201610) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheling Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Zeng, C., Zeng, Z. et al. Cinnamomum camphora Seed Kernel Oil Improves Lipid Metabolism and Enhances β3-Adrenergic Receptor Expression in Diet-Induced Obese Rats. Lipids 51, 693–702 (2016). https://doi.org/10.1007/s11745-016-4147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-016-4147-8

Keywords

Navigation