Skip to main content
Log in

Dietary Salba (Salvia hispanica L.) ameliorates the adipose tissue dysfunction of dyslipemic insulin-resistant rats through mechanisms involving oxidative stress, inflammatory cytokines and peroxisome proliferator-activated receptor γ

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Rats fed a long-term sucrose-rich diet (SRD) developed adipose tissue dysfunction. In the adipose tissue of these SRD-fed rats, the present study analyzed the possible beneficial effects of dietary Salba (chia) seeds in improving or reversing the depletion of antioxidant defenses, changes in pro-inflammatory cytokines and ROS production.

Methods

Wistar rats were fed a SRD for 3 months. After that, half of the animals continued with the SRD until month 6, while in the other half, corn oil was replaced by chia seeds for 3 months (SRD + chia). A reference group consumed a control diet all the time.

Results

Compared with the SRD-fed rats, the animals fed a SRD + chia showed a reduction in epididymal fat pad weight; the activities of antioxidant enzymes CAT, SOD and GPx returned to control values, while GR significantly improved; mRNA GPx increased, and both mRNA SOD and the redox state of glutathione returned to control values; a significant increase in the expression of Nrf2 was recorded. These results were accompanied by a decrease in XO activity and ROS contents as well as plasma IL-6 and TNF-α levels. Chia seeds reversed the decrease in PPARγ protein mass level and increased the n-3/n-6 fatty acids ratio of membrane phospholipids. Besides, dyslipidemia and insulin sensitivity were normalized.

Conclusion

This study provides new information concerning some mechanisms related to the beneficial effects of dietary chia seeds in reversing adipose tissue oxidative stress and improving the adipose tissue dysfunction induced by a SRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruce KD, Hanson MA (2010) The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr 140:648–652

    Article  CAS  Google Scholar 

  2. Korkmaz GG, Altinoglu E, Civelek S, Sozer V, Erdenen F, Tabak O, Uzun H (2013) The association of oxidative stress markers with conventional risk factors in the metabolic syndrome. Metabolism 62:828–835

    Article  CAS  Google Scholar 

  3. Chen GC, Huang CY, Chang MY, Chen CH, Chen SW, Huang CJ, Chao PM (2011) Two unhealthy dietary habits featuring a high fat content and a sucrose-containing beverage intake, alone or in combination, on inducing metabolic syndrome in Wistar rats and C57BL/6 J mice. Metabolism 60:155–164

    Article  CAS  Google Scholar 

  4. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2007) Fructose-mediated stress signaling in the liver: implications for hepatic insulin resistance. J Nutr Biochem 18:1–9

    Article  CAS  Google Scholar 

  5. Lombardo YB, Chicco AG (2006) Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. Rev J Nutr Biochem 17:1–13

    Article  CAS  Google Scholar 

  6. Poudyal H, Panchal SK, Diwan V, Brown L (2011) Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res 50:372–387

    Article  CAS  Google Scholar 

  7. Barceló-Coblijn G, Murphy EJ (2009) Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48:355–374

    Article  Google Scholar 

  8. da Silva Marineli R, Aguiar Moraes É, Alves Lenquiste S, Texeira Godoy A, Nogueira Eberlin M, Maróstica MR Jr (2014) Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci Technol 59:1304–1310

    Article  Google Scholar 

  9. Ayerza R, Coates W (2005) Ground chia seed and chia oil effects on plasma lipids and fatty acids in the rat. Nutr Res 25:995–1003

    Article  CAS  Google Scholar 

  10. Poudyal H, Panchal SK, Waanders J, Ward L, Brown L (2012) Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem 23:153–162

    Article  CAS  Google Scholar 

  11. Chicco AG, D’Alessandro ME, Hein GJ, Oliva ME, Lombardo YB (2009) Dietary chia seed (Salvia hispanica L.) rich in α-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br J Nutr 101:41–50

    Article  CAS  Google Scholar 

  12. Oliva ME, Ferreira MR, Chicco A, Lombardo YB (2013) Dietary Salba (Salvia hispanica L.) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 89:279–289

    Article  CAS  Google Scholar 

  13. Rossi AS, Oliva ME, Ferreira MR, Chicco A, Lombardo YB (2013) Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats. Br J Nutr 109:1617–1627

    Article  CAS  Google Scholar 

  14. Piya MK, McTernan PG, Kumar S (2013) Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol 216:T1–T15

    Article  CAS  Google Scholar 

  15. Lin Y, Berg AH, Iyengar P, Lam TKT, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE (2005) The hyperglycemia-induced inflammatory response in adipocytes. The role of reactive oxygen species. J Biol Chem 280:4617–4626

    Article  CAS  Google Scholar 

  16. D’Alessandro ME, Selenscig D, Illesca P, Chicco A, Lombardo YB (2015) Time course of adipose tissue dysfunction associated with antioxidant defense, inflammatory cytokines and oxidative stress in dyslipemic insulin resistant rats. Food Funct 6:1299–1309

    Article  Google Scholar 

  17. Vazquez Prieto MA, Bettaieb A, Rodriguez Lanzi C, Soto VC, Perdicaro DJ, Galmarini CR, Haj FG, Miatello RM, Oteiza PI (2015) Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and 3T3-L1 adipocytes. Mol Nutr Food Res 59:622–633

    Article  CAS  Google Scholar 

  18. Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M (2008) Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 16:2081–2087

    Article  CAS  Google Scholar 

  19. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  20. D’Alessandro ME, Chicco A, Lombardo YB (2013) Fish oil reverses the altered glucose transporter, phosphorylation, insulin receptor substrate-1 protein level and lipid contents in the skeletal muscle of sucrose-rich diet fed rats. Prostaglandins Leukot Essent Fatty Acids 88:171–177

    Article  Google Scholar 

  21. Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB (2003) Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr 133:127–133

    Article  CAS  Google Scholar 

  22. Lee HS, Csallany AS (1987) Measurement of free and bound malondialdehyde in vitamin E-deficient and—supplemented rat liver tissues. Lipids 22:104–107

    Article  CAS  Google Scholar 

  23. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  Google Scholar 

  24. Wang X, Che H, Zhang W, Wang J, Ke T, Cao R, Meng S, Li D, Weiming O, Chen J, Luo W (2015) Effects of mild chronic intermittent cold exposure on rat organs. Int J Biol Sci 11:1171–1180

    Article  CAS  Google Scholar 

  25. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  26. Alvarez SM, Gómez NN, Scardapane L, Zirulnik F, Martínez D, Giménez MS (2004) Morphological changes and oxidative stress in rat prostate exposed to a non-carcinogenic dose of cadmium. Toxicol Lett 153:365–376

    Article  CAS  Google Scholar 

  27. Oliva ME, Selenscig D, D’Alessandro ME, Chicco A, Lombardo YB (2011) Soya protein ameliorates the metabolic abnormalities of dysfunctional adipose tissue of dyslipidaemic rats fed a sucrose-rich diet. Br J Nutr 105:1188–1198

    Article  CAS  Google Scholar 

  28. Glantz SA (2005) Primer of biostatistics. McGraw-Hill Medical Pub, DivisionNew York

    Google Scholar 

  29. Snedecor GW, PCochran WG (1967) Factorial experiments. In: Ames IA (ed) Statistical methods applied to experimental agriculture and biology. Iowa State University Press, Ames, pp 339–350

    Google Scholar 

  30. Cummins TD, Holden CR, Sansbury BE, Gibb AA, Shah J, Zafar N, Tang Y, Hellmann J, Rai SN, Spite M, Bhatnagar A, Hill BG (2014) Metabolic remodeling of white adipose tissue in obesity. Am J Physiol Endocrinol Metab 307:E262–E277

    Article  CAS  Google Scholar 

  31. Busserolles J, Zimowska W, Rock E, Rayssiguier Y, Mazur A (2002) Rats fed a high sucrose diet have altered heart antioxidant enzyme activity and gene expression. Life Sci 71:1303–1312

    Article  CAS  Google Scholar 

  32. Yamakura F, Kawasaki H (2010) Post-translational modifications of superoxide dismutase. Biochim Biophys Acta 1804:318–325

    Article  CAS  Google Scholar 

  33. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, Shirakura T, Kato K, Imaizumi K, Takahashi H, Tamura M, Maeda N, Funahashi T, Shimomura I (2013) Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 288:27138–27149

    Article  CAS  Google Scholar 

  34. Flachs P, Rossmeisl M, Bryhn M, Kopecky J (2009) Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin Sci (Lond) 116:1–16

    Article  CAS  Google Scholar 

  35. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N (2011) (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistic insights. Adv Nutr 2:304–316

    Article  CAS  Google Scholar 

  36. Baranowski M, Enns J, Blewett H, Yakandawala U, Zahradka P, Taylor CG (2012) Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T-cell infiltration in obese, insulin-resistant rats. Cytokine 59:382–391

    Article  CAS  Google Scholar 

  37. Makni M, Fetoui H, Gargouri NK, EL Garoui M, Jaber H, Makni J, Boudawara T, Zeghal N (2008) Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in ω-3 and ω-6 fatty acids in hypercholesterolemic rats. Food Chem Toxicol 46:3714–3720

    Article  CAS  Google Scholar 

  38. Schneider KS, Chan JY (2013) Emerging role of Nrf2 in adipocytes and adipose biology. Adv Nutr 4:62–66

    Article  CAS  Google Scholar 

  39. Kusunoki C, Yang L, Yoshizaki T, Nakagawa F, Ishikado A, Kondo M, Morino K, Sekine O, Ugi S, Nishio Y, Kashiwagi A, Maegawa H (2013) Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun 430:225–230

    Article  CAS  Google Scholar 

  40. Gao L, Wang J, Sekhar KR, Yin H, Yared NF, Schneider SN, Sasi S, Dalton TP, Anderson ME, Chan JY, Morrow JD, Freeman ML (2007) Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J Biol Chem 282:2529–2537

    Article  CAS  Google Scholar 

  41. Zhao G, Etherton TD, Martin KR, Vanden Heuvel JP, Gillies PJ, West SG, Kris-Etherton PM (2005) Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun 336:909–917

    Article  CAS  Google Scholar 

  42. Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PL (2012) (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch of Biochem and Biophysics 527:113–118

    Article  CAS  Google Scholar 

  43. Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21:1443–1455

    Article  CAS  Google Scholar 

  44. Storlien LH, Jenkins AB, Chisholm DJ, Pascoe WS, Khouri S, Kraegen EW (1991) Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and ω-3 fatty acids in muscle phospholipid. Diabetes 40:280–289

    Article  CAS  Google Scholar 

  45. González-Mañán D, Tapia G, Gormaz JG, D’ Espessailles A, Espinosa A, Masson L, Varela P, Valenzuela A, Valenzuela R (2012) Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils. Food Funct 3:765–772

    Article  Google Scholar 

  46. Vuksan V, Whitham D, Sievenpiper JL, Jenkins AL, Rogovik AL, Bazinet RP, Vidgen E, Hanna A (2007) Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care 30:2804–2810

    Article  CAS  Google Scholar 

  47. Jin F, Nieman DC, Sha W, Xie G, Qiu Y, Jia W (2012) Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women. Plant Food Hum Nutr 67:105–110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Carlos Marra INIBIOLP, Facultad de Ciencias Médicas, La Plata, Argentina for the evaluation of fatty acid composition of adipose tissue phospholipids. Thanks are also given to Silvia Rodríguez and Walter Da Ru for their skillful technical assistance. The present study was carried out with the financial support of Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) (Grant PICT 945 BID OC /AR 2011) and University of Litoral (CAI+D 0058 LI-2012). The authors thank Agrisalba S.A, Buenos Aires, Argentina for providing the SALBA chia seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. B. Lombardo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

M. R. Ferreira and S. M. Alvarez have contributed equally to the laboratory assays in the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.R., Alvarez, S.M., Illesca, P. et al. Dietary Salba (Salvia hispanica L.) ameliorates the adipose tissue dysfunction of dyslipemic insulin-resistant rats through mechanisms involving oxidative stress, inflammatory cytokines and peroxisome proliferator-activated receptor γ. Eur J Nutr 57, 83–94 (2018). https://doi.org/10.1007/s00394-016-1299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1299-5

Keywords

Navigation