Skip to main content

Advertisement

Log in

The (5Z)-5-Pentacosenoic and 5-Pentacosynoic Acids Inhibit the HIV-1 Reverse Transcriptase

  • Communication
  • Published:
Lipids

Abstract

The natural fatty acids (5Z)-5-pentacosenoic and (9Z)-9-pentacosenoic acids were synthesized for the first time in eight steps starting from either 4-bromo-1-butanol or 8-bromo-1-butanol and in 20–58 % overall yields, while the novel fatty acids 5-pentacosynoic and 9-pentacosynoic acids were also synthesized in six steps and in 34–43 % overall yields. The ∆5 acids displayed the best IC50’s (24–38 µM) against the HIV-1 reverse transcriptase (RT) enzyme, comparable to nervonic acid (IC50 = 12 µM). The ∆9 acids were not as effective towards HIV-RT with the (9Z)-9-pentacosenoic acid displaying an IC50 = 54 µM and the 9-pentacosynoic acid not inhibiting the enzyme at all. Fatty acid chain length and position of the unsaturation was important for the observed inhibition. None of the synthesized fatty acids were toxic (IC50 > 500 µM) towards peripheral blood mononuclear cells. Molecular modeling studies indicated the structural determinants underlying the biological activity of the most potent compounds. These results provide new insights into the structural requirements that must be present in fatty acids so as to enhance their inhibitory potential towards HIV-RT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

DIG:

Digoxigenin

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

FA:

Fatty acids

GC-MS:

Gas chromatography-mass spectrometry

HAART:

Highly active-antiretroviral therapy

HIV:

Human immunodeficiency virus

IC50 :

Inhibitory concentration for half-life maximal inhibition

NA:

Nervonic acid

NNRTI:

Non-nucleoside reverse transcriptase inhibitors

NRTI:

Nucleoside reverse transcriptase inhibitors

PBMC:

Peripheral blood mononuclear cells

PDC:

Pyridinium dichromate

p-TSA:

p-Toluenesulfonic acid

RT:

Reverse transcriptase

THF:

Tetrahydrofuran

References

  1. Carballeira NM (2008) New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog Lipid Res 47:50–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Parang K, Wiebe LI, Knaus EE, Huang JS, Tyrrell DL, Csizmadia F (1997) In vitro antiviral activities of myristic acid analogs against human immunodeficiency and hepatitis B viruses. Antiviral Res 34:75–90

    Article  CAS  PubMed  Google Scholar 

  3. Carballeira NM, Miranda C, Orellano EA, Gonzalez FA (2005) Synthesis of a novel series of 2-methylsulfanyl fatty acids and their toxicity on the human K-562 and U-937 leukemia cell lines. Lipids 40:1063–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hardy S, Langelier Y, Prentki M (2000) Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res 60:6353–6358

    CAS  PubMed  Google Scholar 

  5. Schwarz S, Hufnagel B, Dworak M, Klumpp S, Krieglstein J (2006) Protein phosphatase type 2Calpha and 2Cbeta are involved in fatty acid-induced apoptosis of neuronal and endothelial cells. Apoptosis 11:1111–1119

    Article  CAS  PubMed  Google Scholar 

  6. Lin T, Yin XB, Cai Q, Fan X, Xu K, Huang L, Luo J, Zheng J, Huang J (2012) 13-Methyltetradecanoic acid induces mitochondrial-mediated apoptosis in human bladder cancer cells. Urol Oncol 30:339–345

    Article  CAS  PubMed  Google Scholar 

  7. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114

    Article  CAS  PubMed  Google Scholar 

  8. Perozzo R, Kuo M, AbS Sidhu, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277:13106–13114

    Article  CAS  PubMed  Google Scholar 

  9. Pillai S, Rajagopal C, Kapoor M, Kumar G, Gupta A, Surolia N (2003) Functional characterization of beta-ketoacyl-ACP reductase (FabG) from Plasmodium falciparum. Biochem Biophys Res Comm 303:387–392

    Article  CAS  PubMed  Google Scholar 

  10. Tasdemir D, Topaloglu B, Perozzo R, Brun R, O’neill R, Carballeira NM, Zhang X, Tonge PJ, Lindeng A, Rüedi P (2007) Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg Med Chem 15:6834–6845

    Article  CAS  PubMed  Google Scholar 

  11. Pungitore CR (2008) Natural products as inhibitors of DNA related enzymes. Curr Enzym Inhib 4:194–215

    Article  CAS  Google Scholar 

  12. Richardson ET, Collins SE, Kung T, Jones JH, Hoan Tram K, Boggiano VL, Bekker LG, Zolopa AR (2014) Gender inequality and HIV transmission: a global analysis. J Int AIDS Soc 17:19035

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ntemgwa ML, D’Aquin Toni T, Brenner BG, Camacho RJ, Wainberg MA (2009) Antiretroviral drug resistance in human immunodeficiency virus type 2. Antimicrob Agents Chemother 53:3611–3619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tan JJ, Cong XJ, Hu LM, Wang CX, Jia L, Liang X-J (2010) Therapeutic strategies underpinning the development of novel techniques for the treatment of HIV infection. Drug Discov Today 15:186–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Adamson CS, Freed EO (2010) Novel approaches to inhibiting HIV-1 replication. Antiviral Res 85:119–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sarafianos SG, Marchand B, Das K, Himmel DM, Parnaik MA, Hughes SH, Arnold E (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Goff SP (1990) Retroviral reverse transcriptase: synthesis, structure, and function. J Acquir Immune Defic Syndr 3:817–831

    CAS  PubMed  Google Scholar 

  18. Ivetac A, McCammon JA (2009) Elucidating the inhibition mechanism of HIV-1 non-nucleoside reverse transcriptase inhibitors through multicopy molecular dynamics simulations. J Mol Biol 388:644–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. de Béthune M-P (2010) Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antiviral Res 85:75–90

    Article  PubMed  Google Scholar 

  20. Götte M, Rausch JW, Marchand B, Sarafianos S, Le Grice SF (2010) Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions. J Biochim Biophys Acta 1804:1202–1212

    Article  Google Scholar 

  21. Alcaro S, Alteri C, Artese A, Ceccherini-Silberstein F, Costa G, Ortuso F, Parrotta L, Perno CF, Svicher V (2011) Molecular and structural aspects of clinically relevant mutations related to the approved non-nucleoside inhibitors of HIV-1 reverse transcriptase. Drug Resist Updat 14:141–149

    Article  CAS  PubMed  Google Scholar 

  22. Ravich VL, Masso M, Vaisman II (2011) A combined sequence-structure approach for predicting resistance to the non-nucleoside HIV-1 reverse transcriptase inhibitor. Nevirapine Biophys Chem 153:168–172

    Article  CAS  PubMed  Google Scholar 

  23. Jacobo-Molina A, Ding J, Nanni RG, Clark AD Jr, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P, Hizi A, Hughes SH, Arnold E (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc Natl Acad Sci USA 90:6320–6324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Menéndez-Arias L, Betancor G, Matamoros T (2011) HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Res 92:139–149

    Article  PubMed  Google Scholar 

  25. Loya S, Rudi A, Kashman Y, Hizi A (2002) Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases. Biochem J 362:685–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cihlar T, Ray AS (2010) Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res 85:39–58

    Article  CAS  PubMed  Google Scholar 

  27. Vadivelan S, Deeksha TN, Arun S, Machiraju PK, Gundla R, Sinha BN, Jagarlapudi SA (2011) Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads. Eur J Med Chem 46:851–859

    Article  CAS  PubMed  Google Scholar 

  28. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D, Stammers D (1995) High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nat Struct Biol 2:293–302

    Article  CAS  PubMed  Google Scholar 

  29. Rios A, Quesada J, Anderson D, Goldstein A, Fossum T, Colby-Germinario S, Wainberg MA (2011) Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors. Viral Res 155:189–194

    Article  CAS  Google Scholar 

  30. Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790

    Article  CAS  PubMed  Google Scholar 

  31. Goud TV, Reddy NS, Swamy NR, Ram TS, Venkateswarlu Y (2003) Two new bromotyrosine-derived metabolites from the sponge Psammaplysilla purpurea. Biol Pharm Bull 51:990–993

    Google Scholar 

  32. Sargent JR, Coupland K, Wilson R (1994) Nervonic acid and demyelinating disease. Med Hypothesese 42:237–242

    Article  CAS  Google Scholar 

  33. Mizushina Y, Yoshida S, Matsukage A, Sakaguchi K (1997) The inhibitory action of fatty acids on DNA polymerase beta. Biochim Biophys Acta 1336:509–521

    Article  CAS  PubMed  Google Scholar 

  34. Mizushina Y, Ohkubo T, Date T, Yamaguchi T, Saneyoshi M, Sugawara F, Sakaguchi K (1999) Mode analysis of a fatty acid molecule binding to the N-terminal 8-kDa domain of DNA polymerase beta. A 1:1 complex and binding surface. J Biol Chem 274:25599–25607

    Article  CAS  PubMed  Google Scholar 

  35. Mizushina Y, Sugawara F, Lida A, Sakaguchi K (2000) Structural homology between DNA binding sites of DNA polymerase beta and DNA topoisomerase II. J Mol Biol 304:385–395

    Article  CAS  PubMed  Google Scholar 

  36. Kasai N, Mizushina Y, Sugawara F, Sakaguchi K (2002) Three-dimensional structural model analysis of the binding site of an inhibitor, nervonic acid, of both DNA polymerase beta and HIV-1 reverse transcriptase. J Biochem 132:819–828

    Article  CAS  PubMed  Google Scholar 

  37. Rezanka T, Sigler K (2009) Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Prog Lipid Res 48:206–238

    Article  CAS  PubMed  Google Scholar 

  38. Takayama K, Qureshi N (1978) Isolation and characterization of the monounsaturated long chain fatty acids of Mycobacterium tuberculosis. Lipids 13:575–579

    Article  CAS  PubMed  Google Scholar 

  39. Barnathan G, Kornprobst JM, Doumenq P, Miralles J (1996) New unsaturated long-chain fatty acids in the phospholipids from the Axinellida sponges Trikentrion loeve and Pseudaxinella cf. lunaecharta. Lipids 31:193–200

    Article  CAS  PubMed  Google Scholar 

  40. Christie WW, Brechany EY, Stefanov K, Popov S (1992) The fatty acids of the sponge Dysidea fragilis from the Black Sea. Lipids 27:640–644

    Article  CAS  Google Scholar 

  41. Carballeira NM, Shalabi F (1994) Unusual lipids in the Caribbean sponges Amphimedon viridis and Desmapsamma anchorata. J Nat Prod 57:1152–1159

    Article  CAS  PubMed  Google Scholar 

  42. Makarieva TN, Santalova EA, Gorshkova IA, Dmitrenok AS, Guzii AG, Gorbach VI, Svetashev VI, Stonik VA (2002) A new cytotoxic fatty acid (5Z,9Z)-22-methyl-5,9-tetracosadienoic acid and the sterols from the far Eastern sponge Geodinella robusta. Lipids 37:75–80

    Article  CAS  PubMed  Google Scholar 

  43. Carballeira NM, Alicea J (2002) Novel methoxylated FA from the Caribbean sponge Spheciospongia cuspidifera. Lipids 37:305–308

    Article  CAS  PubMed  Google Scholar 

  44. Nechev J, Christie WW, Robaina R, de Diego F, Popov S, Stefanov K (2004) Chemical composition of the sponge Hymeniacidon sanguinea from the Canary Islands. Comp Biochem Physiol 137A:365–374

    Article  CAS  Google Scholar 

  45. Suzuki K, Craddock BP, Kano T, Steigbigel RT (1993) Colorimetric reverse transcriptase assay for HIV-1. J Virol Methods 41:21–28

    Article  CAS  PubMed  Google Scholar 

  46. Bustanji Y, Al-Masri IM, Qasem A, Al-Bakri AG, Taha MO (2009) In silico screening for non-nucleoside HIV-1 reverse transcriptase inhibitors using physicochemical filters and high-throughput docking followed by in vitro evaluation. Chem Biol Drug Des 74:258–265

    Article  CAS  PubMed  Google Scholar 

  47. Clark M, Cramer RD, van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  48. Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12:241–254

    Article  Google Scholar 

  49. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  50. Jones G, Willett P, Glen RC, Leach AR, Taylor RD (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  51. Ding J, Das K, Hsiou Y, Sarafianos SG, Clark AD Jr, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E (1998) Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 Å resolution. J Mol Biol 284:1095–1111

    Article  CAS  PubMed  Google Scholar 

  52. Sanabria-Ríos DJ, Rivera-Torres Y, Maldonado-Domínguez G, Domínguez I, Ríos C, Díaz D, Rodríguez JW, Altieri-Rivera JS, Rios-Olivares E, Cintrón G, Montano N, Carballeira NM (2014) Antibacterial activity of 2-alkynoic fatty acids against multidrug-resistant bacteria. Chem Phys Lipids 178:84–91

    Article  PubMed Central  PubMed  Google Scholar 

  53. Carballeira NM, Cartagena MM, Fernández Prada C, Fernández Rubio C, Balaña-Fouce R (2009) Total synthesis and antileishmanial activity of the naturally occurring acetylenic fatty acids 6-heptadecynoic acid and 6-icosynoic acid. Lipids 44:953–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the work described herein was initially supported by Award Number SC1GM084708 from the National Institutes of General Medical Sciences (NIGMS) of the NIH. K. Rosado acknowledges the support of the UPR RISE program for an undergraduate fellowship. We thank Dr. Fred Strobel (Emory University) for the high resolution mass spectral data. We acknowledge the support of the National Center for Research Resources and the NIGMS of the NIH through Grant Number 5P20 GM 103475-13, the PRCTRC Grant through the Grant Numbers U54 RR026139 and 8U54MD 007587-03, and the National Institute on Minority Health and Health Disparities of the NIH through Grant Number 8G12MD007583-28 for the use of their research facilities for performing cytotoxicity tests involving PBMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néstor M. Carballeira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, L.G., Orellano, E.A., Rosado, K. et al. The (5Z)-5-Pentacosenoic and 5-Pentacosynoic Acids Inhibit the HIV-1 Reverse Transcriptase. Lipids 50, 1043–1050 (2015). https://doi.org/10.1007/s11745-015-4064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4064-2

Keywords

Navigation