Skip to main content
Log in

Protein phosphatase type 2Cα and 2Cβ are involved in fatty acid-induced apoptosis of neuronal and endothelial cells

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Unsaturated fatty acids with special structural features have been shown to activate serine/threonine protein phosphatase type 2C (PP2C) isoforms α and β at physiological Mg2+-concentrations in vitro. These compounds also induce apoptosis in neuronal and endothelial cells. In this study we further analysed this striking correlation and tried to elucidate whether or not there is a causative relationship between activation of PP2C and induction of apoptosis.

We employed RNA interference to simultaneously knock down PP2Cα and PP2Cβ in SH-SY5Y cells or HUVECs, respectively. This downregulation was transient. Treatment of SH-SY5Y cells or HUVECs with oleic acid (18:1,cis9) caused apoptosis in a time- and concentration-dependent manner. In both cases, cells with reduced PP2C-levels were less susceptible to oleic acid-induced cell damage.

In conclusion, our results demonstrate that PP2C activation by unsaturated fatty acids actually causes apoptosis in neuronal and endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DMSO:

dimethylsulfoxide

ECL:

enhanced chemoluminescence

FCS:

fetal calf serum

FFAs:

free fatty acids

HUVECs:

human umbilical vein endothelial cells

PBS:

phosphate buffered saline

PP1:

protein phosphatase 1

PP2A:

protein phosphatase type 2A

PP2C:

protein phosphatase type 2C

PPM:

protein phosphatase, magnesium-dependent

PPP:

phosphoprotein phosphatase

RNAi:

RNA interference

siRNA:

small interfering RNA

SDS:

sodium dodecyl sulphate

TBST:

Tris-buffered saline with Tween

References

  1. McGowan CH, Cohen P (1988) Protein phosphatase-2C from rabbit skeletal muscle and liver: an Mg2+-dependent enzyme. Methods Enzymol 159:416–426

    Article  PubMed  CAS  Google Scholar 

  2. Ingebritsen TS, Cohen P (1983) The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem 132:255–261

    Article  PubMed  CAS  Google Scholar 

  3. Barford D (1996) Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 21:407–412

    Article  PubMed  CAS  Google Scholar 

  4. Komaki K, Katsura K, Ohnishi M, et al. (2003) Molecular cloning of PP2Ceta, a novel member of the protein phosphatase 2C family. Biochim Biophys Acta 1630:130–137

    PubMed  CAS  Google Scholar 

  5. Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18:13–24

    Article  PubMed  CAS  Google Scholar 

  6. Moore F, Weekes J, Hardie DG (1991) Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur J Biochem 199:691–697

    Article  PubMed  CAS  Google Scholar 

  7. Davies SP, Helps NR, Cohen PT, Hardie DG (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 377:421–425

    Article  PubMed  CAS  Google Scholar 

  8. Ching YP, Kobayashi T, Tamura S, Hardie DG (1997) Specificity of different isoforms of protein phosphatase-2A and protein phosphatase-2C studied using site-directed mutagenesis of HMG-CoA reductase. FEBS Lett 411:265–268

    Article  PubMed  CAS  Google Scholar 

  9. Ofek P, Ben-Meir D, Kariv-Inbal Z, Oren M, Lavi S (2003) Cell cycle regulation and p53 activation by protein phosphatase 2C alpha. J Biol Chem 278:14299–14305

    Article  PubMed  CAS  Google Scholar 

  10. Hanada M, Kobayashi T, Ohnishi M, et al (1998) Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett 437:172–176

    Article  PubMed  CAS  Google Scholar 

  11. Hanada M, Ninomiya-Tsuji J, Komaki K, et al (2001) Regulation of the TAK1 signaling pathway by protein phosphatase 2C. J Biol Chem 276:5753–5759

    Article  PubMed  CAS  Google Scholar 

  12. Klumpp S, Selke D, Krieglstein J (2003) Protein phosphatase type 2C dephosphorylates BAD. Neurochem Int 42:555–560

    Article  PubMed  CAS  Google Scholar 

  13. Klumpp S, Selke D, Hermesmeier J (1998) Protein phosphatase type 2C active at physiological Mg2+: stimulation by unsaturated fatty acids. FEBS Lett 437:229–232

    Article  PubMed  CAS  Google Scholar 

  14. Klumpp S, Selke D, Ahlemeyer B, Schaper C, Krieglstein J (2002) Relationship between protein phosphatase type-2C activity and induction of apoptosis in cultured neuronal cells. Neurochem Int 41:251–259

    Article  PubMed  CAS  Google Scholar 

  15. Zhu Y, Schwarz S, Ahlemeyer B, Grzeschik S, Klumpp S, Krieglstein J (2005) Oleic acid causes apoptosis and dephosphorylates Bad. Neurochem Int 46:127–135

    Article  PubMed  CAS  Google Scholar 

  16. Hufnagel B, Dworak M, Soufi M, et al (2005) Unsaturated fatty acids isolated from human lipoproteins activate protein phosphatase type 2Cbeta and induce apoptosis in endothelial cells. Atherosclerosis 180:245–254

    Article  PubMed  CAS  Google Scholar 

  17. Klumpp S, Selke D (1998) Separation of protein phosphatase type 2C isozymes by chromatography on blue sepharose. Methods Mol Biol 93:213–218

    PubMed  CAS  Google Scholar 

  18. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in mammalian cell culture. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  19. Biajolan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J 256:283–290

    Google Scholar 

  20. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    Article  PubMed  CAS  Google Scholar 

  21. Hardy S, Langelier Y, Prentki M (2000) Oleate activates phosphoatidylinositol 3-kinase and promotes proliferaton and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res 60:6353–6358

    PubMed  CAS  Google Scholar 

  22. Eitel K, Staiger H, Brendel MD, et al (2002) Different role of saturated and unsaturated fatty acids in β-cell apoptosis. Biochem Biophys Res Commun 299:853–856

    Article  PubMed  CAS  Google Scholar 

  23. Lu Z, Mu YM, Wang BA, et al (2003) Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cells. Biochem Biophys Res Commun 303:1002–1007

    Article  PubMed  CAS  Google Scholar 

  24. Leaver HA, Rizzo M, Whittle IR (2002) Antitumour actions of highly unsaturated fatty acids: cell signalling and apoptosis. Prostaglandins Leukotrienes Essential Fatty Acids 66:1–3

    Article  CAS  Google Scholar 

  25. Cheng J, Ogawa K, Kuriki K, et al (2003) Increased intake of n-3 polyunsaturated fatty acids elevates the level of apoptosis in the normal sigmoid colon of patients polypectomized for adenomas/tumors. Cancer Lett 193:17–24

    Article  PubMed  CAS  Google Scholar 

  26. Healy DA, Watson R, Newsholme P (2003) Polyunsaturated and monounsaturated fatty acids increase neutral lipid accumulation, caspase activation and apoptosis in a neutrophil-like, differentiated HL-60 cell line. Clin Sci 104:171–179

    Article  PubMed  CAS  Google Scholar 

  27. Wrede CE, Dickson LM, Lingohr MK, Briaud I, Rhodes CJ (2002) Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic β-cells (INS-1). J Biol Chem 277:49676–49684

    Article  PubMed  CAS  Google Scholar 

  28. Spector AA (1975) Fatty acid binding to plasma albumin. J Lipid Res 16:165–179

    PubMed  CAS  Google Scholar 

  29. Parks JS, Cistola DP, Small DM, Hamilton JA (1983) Interactions of the carboxyl group of oleic acid with bovine serum albumin: a 13C NMR study. J Biol Chem 258:9262–9269

    PubMed  CAS  Google Scholar 

  30. Bhattacharya AA, Grune T, Curry S (2000) Cristallographic analysis reveals common modes of binding of medium- and long-chain fatty acids to human serum albumin. J Mol Biol 303:721–732

    Article  PubMed  CAS  Google Scholar 

  31. Clark H, Carling D, Saggerson D (2004) Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids. Eur J Biochem 271:2215–2224

    Article  PubMed  CAS  Google Scholar 

  32. Kobayashai M, Mutharasan RK, Feng J, Roberts MF, Lomasney JW (2004) Identification of hydrophobic interactions between proteins and lipids: Free fatty acids activate phospholipase Cδ1 via allosterism. Biochemistry 43:7522–7533

    Article  CAS  Google Scholar 

  33. Chalifour R, Kanfer JN (1982) Fatty acid activation and temperature pertubation of rat brain microsomal phospholipase D. J Neurochem 39:299–305

    PubMed  CAS  Google Scholar 

  34. Siafaka-Kapadou A, Hanahan DJ, Javors MA (1997) Oleic acid-induced Ca2+-mobilization in human platelets: Is oleic acid an intracellular messenger? J Lipid Mediat Cell Signal 15:215–232

    Article  Google Scholar 

  35. Schaloske R, Sonnemann J, Malchow D, Schlatterer C (1998) Fatty acids induce release of Ca2+ from acidosomal stores and activate capacitative Ca2+ entry in Dictyostelium discoideum. Biochem J 332:541–548

    PubMed  CAS  Google Scholar 

  36. Ogawa M, Yoshida S, Ogawa T, Shimada T, Takeshita M (1988) Effect of oleic acid on mitochondrial oxidative phosphorylation in rat brain slices. Biochem Int 17:773–782

    PubMed  CAS  Google Scholar 

  37. Duval C, Auge N, Frisach MF, Casteilla L, Salvayre R, Negre-Salvayre A (2002) Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptor-dependent activation of glutathione peroxidase. Biochem J 367:889–894

    Article  PubMed  CAS  Google Scholar 

  38. Maestre I, Jordan J, Calvo S, et al (2003) Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the β-cell line INS-1. Endocrinology 144:335–345

    Article  PubMed  CAS  Google Scholar 

  39. Epand RF, Martinou JC, Montessuit S, Epand RM (2004) Fatty acids enhance membrane permeabilization by pro-apoptotic Bax. Biochem J 377:509–516

    Article  PubMed  CAS  Google Scholar 

  40. Puertollano MA, de Pablo MA, Alvarez de Cienfuegos G (2003) Polyunsaturated fatty acids induce cell death in YAC-1 lymphoma by a caspase-3-independent mechanism. Anticancer Res 23:3905–3910

    PubMed  CAS  Google Scholar 

  41. Cury-Boaventura MF, Curi R (2005) Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin Sci 108:245–253

    Article  PubMed  CAS  Google Scholar 

  42. Mizotani K, Inoue I (2002) The mechanism of apoptosis by the oleic acid in HeLa cells: caspase-independent pathway by induction of IκBβ. J Saitama Med School 29:117–123

    Google Scholar 

  43. Cury-Boaventura MF, Pompeia C, Curi R (2004) Comparative toxicity of oleic acid and linoleic acid on Jurkat cells. Clin Nutr 23:721–732

    Article  PubMed  CAS  Google Scholar 

  44. Banner CD, Gottlicher M, Widmark E, Sjovall J, Rafter JJ, Gustafsson JA (1993) A systematic analytical chemistry/cell assay approach to isolate activators of orphan nuclear receptors from biological extracts: characterization of peroxisome proliferator-activated receptor activators in plasma. J Lipid Res 34:1583–1591

    PubMed  CAS  Google Scholar 

  45. Braissant O, Foufelle F, Scott C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α-β/δ and -γ in the adult rat. Endocrinology 137:354–366

    Article  PubMed  CAS  Google Scholar 

  46. Cullingford TE, Bhakoo K, Peuchen S, Dolphin CT, Patel R, Clark JB (1996) Distribution of mRNA encoding the peroxisome proliferator-activated receptor α, β, and γ and the retinoic receptors α, β, and γ in rat. nervous system. J Neurochem 70:1366–1375

    Article  Google Scholar 

  47. Wolfrum C, Borman CM, Borchers T, Spener F (2001) Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α and γ-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci USA 98:2323–2328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Krieglstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, S., Hufnagel, B., Dworak, M. et al. Protein phosphatase type 2Cα and 2Cβ are involved in fatty acid-induced apoptosis of neuronal and endothelial cells. Apoptosis 11, 1111–1119 (2006). https://doi.org/10.1007/s10495-006-6982-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-6982-1

Keywords

Navigation