Skip to main content
Log in

Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Pistachio tree (Pistacia vera L.) is among the tree species that are most tolerant to salinity stress. In the present investigation, we analyzed the behavior of two pistachio genotypes (Badami–e–Zarand (BZ) and Badami–e–Sefid (BS)) under different NaCl concentrations to reveal the mechanisms involved in salinity tolerance. A greater decline in several growth-related traits and biomass as well as relative water content was observed in BS seedlings than in BZ seedlings. Proline content, which is an indicator of stress, increased in both genotypes. Salinity induced oxidative stress in both genotypes, but the levels were higher for the BS genotype. The negative impact of salinity on photosynthetic process in BS was represented by a remarkable decrease in total chlorophyll and carotenoids, while the better performance of the BZ genotype under high salinity was accompanied by an increase in the activities of ascorbate peroxidase, catalase and guaiacol peroxidase. A significant increase in the superoxide dismutase activity in the leaves of BZ was observed under moderate salinity treatment. In both genotypes, Na+ content in leaf and root tissues increased progressively after salinity treatment. However, the leaves of BZ contained less Na+ and retained a lower Na+/K+ ratio. Moreover, under salinity treatment, BZ seedlings had a greater amount of NHX1 transcripts, which suggests that excess Na+ may be sequestered into root vacuoles to avoid deleterious effects of these toxic ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

PVP:

Polyvinylpyrrolidone

NBT:

Nitroblue tetrazolium

EDTA:

Ethylenediamine-N,N,N0,N0 tetraacetic acid

TCA:

Trichloroacetic acid

MDA:

Malondialdehyde

References

  • Acosta-Motosa JR, Diaz-Vivancosb P, Álvareza S, Fernández-Garcíac N, Sánchez-Blancoa MJ, Hernández JA (2015) NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. J Plant Physiol 183:41–51

    Article  CAS  Google Scholar 

  • Ahmad P, Latef AA, Hashem A, Allah EFA, Gucel S, Tran LP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347. https://doi.org/10.3389/fpls.2016.00347

    Article  PubMed  PubMed Central  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora - Morphol Distrib Funct Ecol Plants 199(5):361–376

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on oxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69:275–284

    Article  CAS  Google Scholar 

  • Bates LS, Walderd RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal Biochem 444:276–287

    Article  Google Scholar 

  • Benzarti M, Ben Rejeb K, Messedi D, Ben Mna A, Hessini K, Ksontini M, Abdelly C, Debez A (2014) Effect of high salinity on Atriplex portulacoides: growth, leaf water relations and solute accumulation in relation with osmotic adjustment. S Afr J Bot 95:70–77

    Article  CAS  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Campbell CR, Plank CO (1998) Preparation of plant tissue for laboratory analysis. In: Kalra YP (ed) Handbook of reference methods for plant analysis. CRC Press, Boca Raton, Florida, pp 37–49

    Google Scholar 

  • Chakraborty K, Bishi SK, Goswami N, Singh AL, Zala PV (2016) Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes. Environ Exp Bot 128:79–90

    Article  CAS  Google Scholar 

  • Chelli-Chaabouni A, Ben Mosbah A, Maalej M, Gargouri K, Gargouri-Bouzid R, Drira N (2010) In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. Environ Exp Bot 69:302–312

    Article  CAS  Google Scholar 

  • Desingh R, Kanagaraj G (2007) Influence of salinity stress on photosynthesis and anti-oxidative systems in two cotton varieties. Gen Appl Plant Physiol 33(3–4):221–234

    CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thrope TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid per oxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:43–101

    Article  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES activated signaling. Annu Rev Plant Biol 64:429–450

    Article  CAS  PubMed  Google Scholar 

  • Ferguson L, Poss JA, Grattan SR, Grieve CM, Wang D, Wilson C, Donovan TJ, Chao CT (2002) Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress. J Am Soc Hortic Sci 127:194–199

    CAS  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    Article  CAS  PubMed  Google Scholar 

  • Food and Agricultural Organization (FAO) (2008) Land and plant nutrition management service. http://www.fao.org/ag/ag1/ag11/spush/

  • Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodríguez-Rosales MP, Venema K (2012) Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiol Biochem 51:109–115

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Greenberg ME, Li XM, Gugiu BG, Gu X, Qin J et al (2008) The lipid whisker model of the structure of oxidized cell membranes. J Biol Chem 283:2385–2396

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar D, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Norouzi F, Poschenrieder C (2014) Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees 28:1065–1078

    Article  CAS  Google Scholar 

  • Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49:178–185

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:25–32

    Google Scholar 

  • Hokmabadi H, Arzani K, Grierson PF (2005) Growth, chemical composition, and carbon isotope discrimination of pistachio (Pistacia vera L.) rootstock seedlings in response to salinity. Aust J Agric Res 56:135–144

    Article  CAS  Google Scholar 

  • Jazi MM, Rajaei S, Seyedi SM (2015) Isolation of high quality RNA from pistachio (Pistacia vera L.) and other woody plants high in secondary metabolites. Physiol Mol Biol Plants 21(4):597–603

    Article  CAS  Google Scholar 

  • Jazi MM, Khorzoghi EG, Botanga C, Seyedi SM (2016) Identification of reference genes for quantitative gene expression studies in a non-model tree pistachio (Pistacia vera L.). PLoS One 11(6):e0157467

    Article  CAS  Google Scholar 

  • Jiang X, Qi W, Xu X, Li Y, Liao Y, Wang B (2014) Higher soil salinity causes more physiological stress in female of Populus cathayana cuttings. Acta Ecol Sin 34:225–231

    Article  Google Scholar 

  • Kabała K, Kłobus G (2008) Modification of vacuolar proton pumps in cucumber roots under salt stress. J Plant Physiol 165:1830–1837

    Article  PubMed  CAS  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Khan NA (2012) Variation in salt tolerance of wheat cultivars: role of glycine betaine and ethylene. Pedosphere 22:746–754

    Article  CAS  Google Scholar 

  • Krebs M, Beyhl D, Görlicha E, Al-Rasheid KAS, Marten I, Stierhof YD, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. PNAS 107:3251–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Y, Korpelainen H, Li C (2007) Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Chemosphere 68:686–694

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler H, Wellburm AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–593

    Article  Google Scholar 

  • Liu C, Li C, Liang D, Wei Z, Zhou S, Wang R, Ma F (2012) Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species. Plant Physiol Biochem 58:159–165

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Alcántara B, Martínez-Cuenca MR, Quiñones A, Iglesias DJ, Primo-Millo E, Forner-Giner MA (2015) Comparative expression of candidate genes involved in sodium transport and compartmentation in Citrus. Environ Exp Bot 111:52–62

    Article  CAS  Google Scholar 

  • Mhadhbia H, Fotopoulos V, Mylon PV, Jebara M, Elarbi Aouanid M, Polidoros Alexios N (2011) Antioxidant gene–enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214

    Article  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennelli. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nooghi FH, Mozafari V (2012) Effects of calcium on eliminating the negative effects of salinity in pistachio (Pistacia vera L.) seedling. Aust J Crop Sci 6(4):711–716

    Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant 30:619–627

    Article  CAS  Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet L, Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Plewa MJ, Smith SR, Wanger ED (1991) Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. J Mutat Res 247:57–64

    Article  CAS  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82

    Article  Google Scholar 

  • Ruiz-Carrasco K et al (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133(4):651–669

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 8:718–726

    Article  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant physiol 149(2):1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzymes efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619

    Article  CAS  Google Scholar 

  • Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production detoxification and signaling. Trends Plant Sci 14:219–228

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Tripathy BC (2012) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Kwask SS (2009) Analysis of antioxidant enzymes activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wheatherley PE (1973) Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytol 49:81–87

    Article  Google Scholar 

  • Widodo JH, Patterson E, Newbigin M, Tester A, Roessner Bacic U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+ /H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Xiao X, Zhang S, Korpelainen H, Li C (2009) Salt stress responses in Populus cathayana Rehder. Plant Sci 176:669–677

    Article  CAS  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ali Ahmadi Moghadam for revising first draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Rahneshan.

Additional information

Communicated by K. Apostol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahneshan, Z., Nasibi, F., Lakehal, A. et al. Unravelling salt stress responses in two pistachio (Pistacia vera L.) genotypes. Acta Physiol Plant 40, 172 (2018). https://doi.org/10.1007/s11738-018-2745-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2745-1

Keywords

Navigation