Skip to main content
Log in

Intrashoot variation in aerobic methane emissions from pea plants exposed to multiple abiotic stresses

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Methane (CH4) emissions from plants have been shown to increase with stress factors. However, the effects of multiple environmental stressors on CH4 emissions from various shoot parts have not been studied. Peas (Pisum sativum L. cv. 237J Sundance) were used to determine CH4 emissions from the upper, middle and lower parts of shoot. Plants were grown in controlled-environment chambers under temperature regime of 22/18 or 28/24 °C (16-h light/8-h dark), ultraviolet-B (UVB) level of 0 or 5 kJ m−2 day−1, and watering to field capacity (well-watered) or at wilting point (water-stressed). Methane emission, photosynthetic parameters (A N, net CO2 assimilation; E, transpiration; g s, stomatal conductance; WUE, water use efficiency), chlorophyll fluorescence (ϕPSII, effective quantum yield of PSII; F v/F m, maximum quantum yield of PSII; qNP, non-photochemical quenching; qP, photochemical quenching), total chlorophyll and flavonoids were measured in shoots of 1-month-old plants. Higher temperatures and UVB increased CH4 emissions, which were higher from stem than leaf and from upper shoot than lower shoot. Lower leaves emitted more CH4 than upper leaves. Methane emissions were increased by higher temperatures with water stress from both shoot and stem, by UVB5 with water stress from stem, and by higher temperatures with UVB0 from leaf. Water stress decreased all photosynthetic parameters. Higher temperatures and UVB5 decreased WUE, whereas UVB5 increased E and g s. UVB5 and water stress decreased ϕPSII, but water stress increased qNP. A N, E, g s, ϕPSII and chlorophyll were highest in the upper leaves. All the main factors decreased chlorophyll. UVB5 decreased flavonoids, which were lowest in the lower leaves. Methane emission from the stem had a positive correlation with E and g s, but a negative correlation with WUE. Overall, stress factors increased CH4 emissions, which varied with shoot parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A N :

Net CO2 assimilation

E :

Transpiration

F v/F m :

Maximum quantum yield of PSII

g s :

Stomatal conductance

ϕPSII:

Effective quantum yield of PSII

PSII:

Photosystem II

WUE:

Water use efficiency

References

  • Abdulmajeed AM, Derby SR, Strickland SK, Qaderi MM (2017) Interactive effects of temperature and UVB radiation on methane emissions from different organs of pea plants grown in hydroponic system. J Photochem Photobiol B Biol 166:193–201

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241

    Article  PubMed  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Blaha D, Bartlett K, Czepiel P, Harriss R, Crill P (1999) Natural and anthropogenic methane sources in New England. Atmos Environ 33:243–255

    Article  CAS  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514

    Article  Google Scholar 

  • Bowling DR, Miller JB, Rhodes ME, Burns SP, Monson RK, Baer D (2009) Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance. Biogeosciences 6:1311–1324

    Article  CAS  Google Scholar 

  • Brodersen CR, Vogelmann TC (2007) Do epidermal lens cells facilitate the absorptance of diffuse light? Am J Bot 94:1061–1066

    Article  PubMed  Google Scholar 

  • Bruhn D, Mikkelsen TN, Øbro J, Willats WGT, Ambus P (2009) Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material. Plant Biol 11(Suppl. 1):43–48

    Article  CAS  PubMed  Google Scholar 

  • Bruhn D, Møller IM, Mikkelsen TN, Ambus P (2012) Terrestrial plant methane production and emission. Physiol Plant 144:201–209

    Article  CAS  PubMed  Google Scholar 

  • Bruhn D, Mikkelsen TN, Rolsted MMM, Egsgaard H, Ambus P (2014) Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biol 16:512–516

    Article  CAS  PubMed  Google Scholar 

  • Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environ Sci Technol 41:4032–4037

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM (1971) Solar UV irradiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology, vol 6. Academic Press, New York, pp 131–177

    Chapter  Google Scholar 

  • Cechin I, Corniani N, Fumis TF, Cataneo AC (2010) Differential responses between mature and young leaves of sunflower plants to oxidative stress caused by water deficit. Ciênc Rural 40:1290–1294

    Article  Google Scholar 

  • Costa R, Pinheiro N, Almeida AS, Maçãs B (2012) Influence of enhanced UV-B radiation on wheat production in relation with abiotic, biotic and socioeconomics constraints. Emir J Food Agric 24:565–575

    Article  Google Scholar 

  • Cui L, Li J, Fan Y, Xu S, Zhang Z (2006) High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Bot Stud 47:61–69

    CAS  Google Scholar 

  • Fraser WT, Blei E, Fry SC, Newman MF, Reay DS, Smith KA, McLeod AR (2015) Emission of methane, carbon monoxide, carbon dioxide and short-chain hydrocarbons from vegetation foliage under ultraviolet irradiation. Plant Cell Environ 38:980–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffarian A (2008) Aerobic methane production of tropical plants. Cantaurus 16:2–5

    Google Scholar 

  • Hinkelmann K, Kempthorne O (2008) Design and analysis of experiments, volume 1: Introduction to experimental design, 2nd edn. Wiley, Hoboken

  • Hollósy F (2002) Effect of ultraviolet radiation on plant cells. Micron 33:179–197

    Article  PubMed  Google Scholar 

  • Houghton SJ (2015) Global warming: the complete briefing, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Imai K, Suzuki Y, Makino A, Mae T (2005) Effects of nitrogen nutrition on the relationships between the levels of rbcS and rbcL mRNAs and the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase synthesized in the eighth leaves of rice from emergence through senescence. Plant Cell Environ 28:1589–1600

    Article  CAS  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Jones HG (2014) Plants and microclimate: a quantitative approach to environmental plant physiology, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814

    Article  CAS  PubMed  Google Scholar 

  • Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler J-P (2009) Methane formation in aerobic environments. Environ Chem 6:459–465

    Article  CAS  Google Scholar 

  • Kirnak H, Kaya C, Tas I, Higgs D (2001) The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulg J Plant Physiol 27:34–46

    Google Scholar 

  • Lammertsma EI, de Boer HJ, Dekker SC, Dilcher DL, Lotter AF, Wagner-Cremer F (2011) Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc Natl Acad Sci USA 108:4035–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenhart K, Althoff F, Greule M, Keppler F (2015) Technical note: methionine, a precursor of methane in living plants. Biogeosciences 12:1907–1914

    Article  CAS  Google Scholar 

  • Leymarie J, Lascève G, Vavasseur A (1999) Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant Cell Environ 22:301–308

    Article  CAS  Google Scholar 

  • Liang B, Huang X, Zhang G, Zhang F, Zhou Q (2006) Effect of lanthanum on plants under supplementary ultraviolet-B radiation: effect of lanthanum on flavonoid contents in soybean seedlings exposed to supplementary ultraviolet-B radiation. J Rare Earths 24:613–616

    Article  Google Scholar 

  • Lowe DC (2006) A green source of surprise. Nature 439:148–149

    Article  CAS  PubMed  Google Scholar 

  • Martel AB, Qaderi MM (2016) Does salicylic acid mitigate the adverse effects of temperature and ultraviolet-B radiation on pea (Pisum sativum) plants? Environ Exp Bot 122:39–48

    Article  CAS  Google Scholar 

  • Martin B, Thorstenson YR (1988) Stable carbon isotope composition (δ13C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiol 88:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yun BW (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytol 180:124–132

    Article  CAS  PubMed  Google Scholar 

  • Messenger DJ, McLeod AR, Fry SC (2009) The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin. Plant Cell Environ 32:1–9

    Article  CAS  PubMed  Google Scholar 

  • Miller BL, Huffaker RC (1982) Hydrolysis of ribulose-1,5-bisphosphate carboxylase by endoproteinases from senescing barley leaves. Plant Physiol 69:58–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minitab Inc (2014) Minitab® Release 17. Statistical Software for Windows®. State College, PA, USA

  • Monti A, Barbanti L, Venturi G (2007) Photosynthesis on individual leaves of sugar beet (Beta vulgaris) during the ontogeny at variable water regimes. Ann Appl Biol 151:155–165

    Article  CAS  Google Scholar 

  • Moschini M, Masoero F, Prandini A, Fusconi G, Morlacchini M, Piva G (2005) Raw pea (Pisum sativum), raw faba bean (Vicia faba var. minor) and raw lupin (Lupinus albus var. multitalia) as alternative protein sources in broiler diets. Ital J Anim Sci 4:59–69

    Article  Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 659–740

  • Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS (2008) Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia 154:625–635

    Article  CAS  PubMed  Google Scholar 

  • Nilsen ET, Orcutt DM (1996) The physiology of plants under stress: abiotic factors. Wiley, New York

    Google Scholar 

  • Nisbet RER, Fisher R, Nimmo RH, Bendall DS, Crill PM, Gallego-Sala AV, Hornibrook ERC, López-Juez E, Lowry D, Nisbet PBR, Shuckburgh EF, Srikantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc B 276:1347–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317

    PubMed  Google Scholar 

  • Ohashi Y, Nakayama N, Saneoka H, Fujita K (2006) Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol Plant 50:138–141

    Article  Google Scholar 

  • Popa ME, Vollmer MK, Jordan A, Brand WA, Pathirana SL, Rothe M, Röckmann T (2014) Vehicle emissions of greenhouse gases and related tracers from a tunnel study: CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO. Atmos Chem Phys 14:2105–2123

    Article  Google Scholar 

  • Qaderi MM, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiol Plant 125:247–259

    Article  CAS  Google Scholar 

  • Qaderi MM, Reid DM (2009) Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress. Physiol Plant 137:139–147

    Article  CAS  PubMed  Google Scholar 

  • Qaderi MM, Reid DM (2011) Stressed crops emit more methane despite the mitigating effects of elevated carbon dioxide. Funct Plant Biol 38:97–105

    Article  CAS  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128:710–721

    Article  CAS  Google Scholar 

  • Qaderi MM, Reid DM, Yeung EC (2007) Morphological and physiological responses of canola (Brassica napus) siliquas and seeds to UVB and CO2 under controlled environment conditions. Environ Exp Bot 60:428–437

    Article  CAS  Google Scholar 

  • Qaderi MM, Basraon NK, Chinnappa CC, Reid DM (2010) Combined effects of temperature, ultraviolet-b radiation, and watering regime on growth and physiological processes in canola (Brassica napus) seedlings. Int J Plant Sci 171:466–481

    Article  CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004a) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Reddy KR, Kakani VG, Zhao D, Koti S, Gao W (2004b) Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance. Photochem Photobiol 79:416–427

    Article  CAS  PubMed  Google Scholar 

  • Sánchez B, Rasmussen A, Porter JR (2014) Temperatures and the growth and development of maize and rice: a review. Glob Change Biol 20:408–417

    Article  Google Scholar 

  • Sangtarash MH, Qaderi MM, Chinnappa CC, Reid DM (2009) Differential sensitivity of canola (Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. Environ Exp Bot 66:212–219

    Article  CAS  Google Scholar 

  • SAS Institute (2011) SAS/STAT user’s guide, version 9.3. SAS Institute, Cary, North Carolina, USA

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature in photosynthesis. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Shah FA, Mahmood Q, Shah MM, Pervez A, Asad SA (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:183752

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  Google Scholar 

  • Shirke PA (2001) Leaf photosynthesis, dark respiration and fluorescence as influenced by leaf age in an evergreen tree, Prosopis juliflora. Photosynthetica 39:305–311

    Article  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Tans P (2017) Mauna Loa annual mean CO2. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 2 April 2017

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Serrano SM, Lopez-Moreno J-I, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorin-Molina C, Morán-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001

    Article  Google Scholar 

  • Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:937–947

    Article  CAS  Google Scholar 

  • Zhang Y-P, Wang Z-M, Wu Y-C, Zhang X (2006) Stomatal characteristics of different green organs in wheat under different irrigation regimes. Acta Agron Sin 32:70–75

    CAS  Google Scholar 

  • Zhang X, Lee X, Griffis TJ, Baker JM, Erickson MD, Hu N, Xiao W (2014) The influence of plants on atmospheric methane in an agriculture-dominated landscape. Int J Biometeorol 58:819–833

    Article  PubMed  Google Scholar 

  • Zhuang L, Chen YN, Li WH, Wang ZK (2011) Anatomical and morphological characteristics of Populus euphratica in the lower reaches of Tarim River under extreme drought environment. J Arid Land 3:261–267

    Article  Google Scholar 

  • Zioni AB, Vaadia Y, Lips SH (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol Plant 24:288–290

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada and Mount Saint Vincent University to MMQ is greatly acknowledged. AMA is grateful to Saudi Cultural Bureau for provision of a graduate scholarship. We thank three anonymous referees for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirwais M. Qaderi.

Additional information

Communicated by K. Apostol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulmajeed, A.M., Qaderi, M.M. Intrashoot variation in aerobic methane emissions from pea plants exposed to multiple abiotic stresses. Acta Physiol Plant 39, 124 (2017). https://doi.org/10.1007/s11738-017-2420-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2420-y

Keywords

Navigation