Skip to main content

Advertisement

Log in

Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum Mill.) under drought stress

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought stress produces many physiological and biochemical changes in plant affecting its life cycle and production. Oxidative damage and antioxidant defense responses are two components of plant to survive under drought stress. Nitric oxide (sodium nitroprusside, SNP) and brassinosteroid (24-epibrassinolide, EBL) were used in this experiment as single and combined application as foliar spray to study the mitigating effect of drought stress in two tomato genotypes EC-625652 (drought susceptible) and EC-620419 (drought tolerant). Drought stress produced harmful effect on number of leaves plant−1, RWCL, fruit set percent, days to first fruit set, number of cluster plant−1, lycopene content, fruit diameter and fruit yield. Plant produces reactive oxygen species (ROS), such as H2O2 in response to drought stress. Exogenous application of SNP and EBL, both in single and combined application, mitigated the deleterious effects of drought and improved drought tolerance by increasing SOD activity, fruit yield, and other physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SNP:

Sodium nitroprusside

EBL:

24-Epibrassinolide

ROS:

Reactive oxygen species

RWCL:

Relative water content of leaf

H2O2 :

Hydrogen peroxide

SOD:

Superoxide dismutase

CAT:

Catalase

References

  • Ali HEM, Ismail GSM (2014) Tomato fruit quality as influenced by salinity and nitric oxide. Turk J Bot 38:122–129

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts, scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Bio Sci 15:413–428

    Article  Google Scholar 

  • Behnamnia M, Kalantari KM, Ziaie J (2009a) The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turk J Bot 33:417–428

    Google Scholar 

  • Behnamnia M, Kalantari KM, Rezanejad F (2009b) Exogenous application of brassinosteroid alleviates drought-induced oxidativestress in Lycopersicon esculentum L. Gen App Plant Physiol 35(1–2):22–34

    CAS  Google Scholar 

  • Bhatt RM, Srinivasa Rao NK (2005) Influence of pod load on response of okra to water stress. Indian J Plant Physiol 10:54–59

    Google Scholar 

  • Bin T, Sang-Zhong X, Xi-Ling Z, Young-Lian Z, Fa-Zhan Q (2010) Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of water logging sensitive maize genotypes seedling stage. Agric Sci China 9(5):651–661

    Article  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43(1):83–116

    Article  CAS  Google Scholar 

  • Bray EA, Bailey SJ, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. Ameri Soc Plant Physiol, Rockville, pp 1158–1249

    Google Scholar 

  • Calcagno AM, Rivas M, Castrillo M (2011) Structural, physiological and metabolic integrated responses of two tomato (Solanum lycopersicum L.) cultivars during leaf rehydration. Aust J Crop Sci 5:695–701

    Google Scholar 

  • Caro A, Puntarulo S (1998) Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiol Plant 104:357–364

    Article  CAS  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture, implications for micropropagators and genetic engineers. Plant Cell Tiss Org Cult 64:145–157

    Article  CAS  Google Scholar 

  • Cechin I, Rossi SC, Oliveira VC, Fumis TF (2006) Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 44(1):143–146

    Article  CAS  Google Scholar 

  • Cechin I, Cardoso GS, Fumis TF, Corniani N (2015) Nitric oxide reduces oxidative damage induced by water stress in sunflower plants. Bragantia Campinas 74(2):200–206

    Article  CAS  Google Scholar 

  • Chavan ML, Janagoudar BS, Dharmatti PR, Koti RV (2010) Effect of drought on growth attributes of tomato genotypes. Indian J Plant Physiol 15(1):11–18

    Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181(5):604–611

    Article  CAS  PubMed  Google Scholar 

  • Desclaux D, Roumet P (1996) Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crops Res 46:61–70

    Article  Google Scholar 

  • Dhindsa RS, Plump-Dhindsa P, Thorpe TA (1981) Leaf senescence, correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Duncan BD (1955) Multiple range and multiple F-test. Biometrics 11:1–42

    Article  Google Scholar 

  • Fang X, Turner NC, Yan G, Li F, Siddique KHM (2009) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot 61:335–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Ghahfarokhi MG, Mansurifar S, Taghizadeh-Mehrjardi R, Saeidi M, Jamshidi AM, Ghasemi E (2015) Effects of drought stress and rewatering on antioxidant systems and relative water content in different growth stages of maize (Zea mays L.) hybrids. Arch Agron Soil Sci 61:493–506

    Article  Google Scholar 

  • Giannakoula AE, Ilias IF (2013) The effect of water stress and salinity on growth and physiology of tomato (lycopersicon esculentum mill.). Arch Biol Sci Belgrade 65(2):611–620

    Article  Google Scholar 

  • Giardini L, Giovanardi R, Borin M (1988) Water consumption and yield response of tomato in relation to water availability at different soil depth. Acta Hortic 228:119–126

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plant. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Halil K, Cengiz K, Ismail TAS, David H (2001) The influence of water deficit on vegetative growth, physiology, fruit yield and quality of egg plants. Bulg J Plant Physiol 27(3–4):34–46

    Google Scholar 

  • Hasheminasab H, Assad MT, Aliakbari A, Sahhafi S (2012) Influence of drought stress on oxidative damage and antioxidant defense systems in tolerant and susceptible wheat genotypes. J Agric Sci 4(8):20–29

    Google Scholar 

  • Hayat S, Hasana SA, Fariduddina Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact 3(4):297–304

    Article  CAS  Google Scholar 

  • Hayat S, Yadav S, Ali B, Ahmad A (2010) Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russ J Plant Physiol 57(2):212–221

    Article  CAS  Google Scholar 

  • He YK, Tang RH, Yi H, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  CAS  PubMed  Google Scholar 

  • Horchani F, Aloui A, Brouquisse R, Aschi-Smiti S (2008) Physiological responses of tomato plants (Solanum lycopersicum) as affected by root hypoxia. J Agron Crop Sci 194:297–303

    Article  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Kavas M, Baloğlu MC, Akça O, Köse FS, Gökçay D (2013) Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turk J Biol 37:491–498

    Article  CAS  Google Scholar 

  • Konieczny R, Libik M, Tuleja M (2008) Oxidative events during in vitro regeneration of sunflower. Acta Physiol Plant 30:71–79

    Article  CAS  Google Scholar 

  • Kramer PJ (1969) Plant and soil water relationships, a modern synthesis. McGraw-Hill Series in Organismic Biology, New York, p 482

    Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide, the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Molla MdN, Chandra AM, Georges TD (2003) Effect of water stress at different growth stages on greenhouse tomato yield and quality. Hortic Sci 38(7):1389–1393

    Google Scholar 

  • Mukherjee SP, Choudhari MA (1983) Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Planta 58:116–170

    Article  Google Scholar 

  • Nuñez M (2000) Análogos de brasinoesteroides cubanos como biorreguladores en la agricultura. Informe final de Proyectos de Investigaciones. Código 00300047. PNCT. Biotecnología Agrícola. CITMA. La Habana

  • Preedy VR, Watson RR (2008) Tomatoes and tomato products, Nutritional, medicinal and therapeutic properties, Science Publishers, pp 664

  • Rad DVR, Vijaya S (1991) Effect of induced moisture stress at different phenological stages on growth and yield of tomato cultivars. South Indian Hortic 39(2):81–87

    Google Scholar 

  • Rana MK, Kalloo G (1989) Morphological attributes associated with the adaptation under water deficit condition in tomato. Veg Sci 16(1):32–38

    Google Scholar 

  • Reddy TY, Reddy VR, AnbumozhI V (2003) Physiological responses of groundnut (Arachis hypogaea L.) to drought stress and its amelioration: a critical review. Plant Growth Regul 41:75–78

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (1992) Biochemical Methods for Agricultural Sciences. Wiley Eastern Ltd, Madras, p 246

    Google Scholar 

  • Sairam RK (1994) Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress condition of two wheat varieties. Plant Growth Regul 14:173–181

    Article  CAS  Google Scholar 

  • Salter PJ (1954) The effects of different water regimes on the growth of plants under class. 1. Experiments with tomatoes (Lycopersicon esculentum Mill.). J Hortic Sci 29:258–268

    Article  Google Scholar 

  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M (2008) Nitric oxide reduces hydrogen peroxide accumulation involved in water stress-induced subcellular anti-oxidant defense in maize plants. J Integr Plant Biol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Bot Croat 66(1):43–56

    CAS  Google Scholar 

  • Santisree P, Bhatnagar P, Sharma KK (2015) NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? Plant Sci 239:44–55

    Article  CAS  PubMed  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids, an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Seng KH (2014) The effects of drought, waterlogging and heat stress on tomatoes (Solanum lycopersicon L), Ph.D. Thesis, Publisher, Lincoln University. http://hdl.handle.net/10182/6432

  • Shi H, Ye T, Zhu JK, Chan Z (2014) Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot 65(15):4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, AL-Whaaibi MH, Basalah MO (2010) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  PubMed  Google Scholar 

  • Simpson GG (2005) NO flowering. Bioessays 27:239–241

    Article  CAS  PubMed  Google Scholar 

  • Singh JP, Prasad S, Singh KN, Singh R (2007) Screening of heat tolerant wheat varieties by membrane thermo stability index in relation to yield and yield attributing traits. Int J Plant Sci 2(2):159–165

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Subramanian KS, Sevaraj KV, Selvakumari G, Shanmugasundaram VS (1993) Influence of moisture stress regimes and nitrogen on growth and yield of brinjal (Solanum melongena L). South Ind Hort 41(1):16–21

    Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Tian X, Lei Y (2006) Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant 50:775–778

    Article  CAS  Google Scholar 

  • Vardhini BV, Rao SSR (2001) Effect of brassinosteroids on growth and yield of tomato (Lycopersicon esculentum Mill.) under field conditions. I J Plant Physiol 6:326–328

    CAS  Google Scholar 

  • Vardhini BV, Sujatha E, Rao SSR (2011) Brassinosteroids, alleviation of water stress in certain enzymes of sorghum seedlings. J Phytol 3(10):38–43

    Google Scholar 

  • Veershetty (2004) Studies on variability, character association and genetic diversity in tomato tomato (Lycopersicon esculentum Mill.). M.Sc.(Agri.) Thesis, Univ Agric Sci Dharwad (India)

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures, towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wudiri BB, Henderson DW (1985) Effects of water stress on flowing and fruit set inprocessing tomatoes. Sci Hortic 27(3):189–198

    Article  Google Scholar 

  • Yardanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101

    Article  Google Scholar 

  • Yin H, Chen Q, Yi M (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54:45–54

    Article  CAS  Google Scholar 

  • Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Wang QM (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126(2):103–108

    Article  CAS  Google Scholar 

  • Zhang S, Su-ying H, Wen-hua Y, Hua-li W, Zhang M, Li-wang Q (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of larix laptolapies. Plant Cell Tiss Organ Cult 100:21–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank UGC, New Delhi for fellowship to the first author, and IIVR, Varanasi for providing tomato genotypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanabh Dwivedi.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest with this publication.

Additional information

Communicated by T. K. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangid, K.K., Dwivedi, P. Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum Mill.) under drought stress. Acta Physiol Plant 39, 73 (2017). https://doi.org/10.1007/s11738-017-2373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2373-1

Keywords

Navigation