Skip to main content
Log in

Interactive effects of excessive potassium and Mg deficiency on safflower

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

In the present work, separate and combined effects of excessive potassium and magnesium deficiency on safflower (Carthamus tinctorius) were studied. Four treatments were considered: C (control treatment: complete medium containing 1.5 mM Mg), +KCl (excessive potassium treatment: complete medium added with 60 mM KCl), −Mg (Mg-deficient treatment: containing 0.1 mM Mg), and DS (double stress treatment: Mg-deficient medium (0.1 mM Mg) added with 60 mM KCl. Excessive potassium effect on plant growth was more pronounced than that of Mg deficiency. The two stresses impaired differently plant organs; KCl application affected more roots than shoots, whereas Mg deficiency reduced only leaf biomass. Gas exchange and pigment concentrations and patterns were severely impaired by KCl and mainly by interactive effects of the two stresses. This led to obvious lipid peroxidation and electrolyte leakage. Mg deficiency did not induce lipid peroxidation and electrolyte leakage, but as applied with excessive potassium, it doubled the effect of the latter. Mineral analyses showed that major cation nutrition was disturbed by KCl and combined stresses and at a lower level by magnesium deficiency. Plants did not show an enhanced selectivity of Mg and Ca over K but they improved their use efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akihisa T, Nozaki A, Inoue Y, Yasukawa K (1997) Alkane diols from flower petals of Carthamus tinctorius. Phytochemistry 45:725–728

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photo-synth Res 60:43–73

    Article  CAS  Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants. Development, visual and analytical diagnosis. Gustav Fisher Verlag, Jena

  • Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62(7):2251–2264

    Article  PubMed  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light Intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Castillo FJ, Heath RL (1990) Ca2+ transport in membrane vesicles from Pinto bean leaves and its alteration after ozone exposure. Plant Physiol 94:788–795

    Article  PubMed  CAS  Google Scholar 

  • Çelik H, Aşik BB, Gürel S, Katkat AV (2010) Effects of potassium and iron on macro-element uptake of maize. Zemdirbyste-Agriculture 97:11–22

    Google Scholar 

  • Claassen CE (1949) Safflower. Econ Bot 3(2):143–149

    Article  CAS  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  PubMed  CAS  Google Scholar 

  • Dajue L, Mündel HH (1996) Safflower. Carthamus tinctorius L. Promoting the conservation and use of underutilized and neglected crops. 7. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome

  • Damon PM, Ma QF, Rengel Z (2011) Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop Past Sci 62(7):550–555

    Article  CAS  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+ permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Luo K, Li D, Zheng X, Wei X, Smith W, Thammina C, Lu L, Li Y, Pei Y (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. J Exp Bot 57:4235–4243

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Luo W, Xu G (2006) Characterization of magnesium nutrition and interaction of magnesium and potassium in rice. Ann Appl Biol 149:111–123

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Gardner RC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6:263–267

    Article  PubMed  CAS  Google Scholar 

  • Gransee A, Führs H (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil (in press)

  • Guo J (2000) Pharmacopoeia of the People Republic of China, vol 1. Chemical Industry Press, Beijing

    Google Scholar 

  • Hagege D, Nouvelot A, Bouchaud J, Gaspar T (1990) Malondialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference. Phytochem Anal 1:86–89

    Article  Google Scholar 

  • Heath RL (1984) Air pollutants effects on biochemicals derived from metabolism: organic, fatty and amino acids. In: Koziol MJ, Whatley FR (eds) Gaseous Air Pollutants and Plant Metabolism. Butterworths, London, pp 275–290

    Google Scholar 

  • Heath RL, Castillo FJ (1988) Membrane disturbances in response to air pollutants. In: Schulte S, Darral NM, Bland LW, Wellburn AR (eds) Air Pollution and Plant Metabolism. Elsevier Applied Science, London, pp 55–75

    Google Scholar 

  • Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2005) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11(12):610–617

    Article  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition, 2nd edn. Commonwealth Agricultural Bureau, London

  • Jones JB (1999) Tomato plant culture: In the field, greenhouse, and home garden. CRC Press LLC, Florida

    Google Scholar 

  • Kaftan D, Brumfeld V, Nevo R, Scherz A, Reich Z (2002) From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes. EMBO J 21:6246–6253

    Article  Google Scholar 

  • Karray-Bouraoui N, Harbaoui F, Rabhi M, Jallali I, Ksouri R, Attia H, Msilini N, Lachaâl M (2011) Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant 33:1435–1444

    Article  CAS  Google Scholar 

  • Kaya MD, Ipek A, Oztürk A (2003) Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turk J Agric For 27:221–227

    Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275:1–24

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Marschner H, Cakmak I (1989) High light intensity enhances chlorosis and necrosis in leaves of zinc potassium, and magnesium deficient bean (Phaseolus vulgaris L.) plants. J Plant Physiol 134:308–315

    Article  CAS  Google Scholar 

  • Marx ES, Hart J, Stevens RG (1999) Soil test interpretation guide. Oregon State University, Oregon

    Google Scholar 

  • McKersie BD, Hucl P, Beversdorf WD (1982) Solute leakage from susceptible and tolerant cultivars of Phaseolus vulgaris following ozone exposure. Can J Bot 60:73–78

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA ((2001)) Principles of Plant Nutrition, 5th edn. Kluwer Academic Publisher, Dordrecht

    Book  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  PubMed  CAS  Google Scholar 

  • Ohno T, Grunes DL (1985) Potassium-magnesium interactions affecting nutrient uptake by wheat forage. Soil Sci Soc Am J 49(3):685–690

    Article  CAS  Google Scholar 

  • Rabhi M, Hajji S, Karray-Bouraoui N, Giuntini D, Castagna A, Smaoui A, Ranieri A, Adelly C (2010) Nutritional behavior of the xerohalophyte: tecticornia indica under salinity. Acta Biol Hung 61:486–497

    Article  PubMed  CAS  Google Scholar 

  • Rammal H, Younos C, Bouayed J, Chakou A, Necerbey N, Soulimani R (2009) Aperçu ethnobotanique et phytopharmacologique sur Carthamus tinctorius L. Phytothérapie 7:28–30

    Article  Google Scholar 

  • Römer W, Schenk H (1998) Influence of genotype on phosphate and utilization efficiencies in spring barley. Eur J Agron 8:215–224

    Article  Google Scholar 

  • Saito K, Miyakawa K (1994) A new procedure for the production of carthamin dye from dyer’s saffron flowers. Lebensm Wiss Technol 27:384–385

    Article  CAS  Google Scholar 

  • Santos CV, Campos A, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52(355):351–360

    Article  PubMed  CAS  Google Scholar 

  • Schimanski C (1981) The influence of certain experimental parameters on the flux characteristics of Mg-28 on the case of barely seedlings grown in hydroculture. Landwirt Forsch 34:154–165

    Google Scholar 

  • Shabala S, Hariadi Y (2005) Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 221:56–65

    Article  PubMed  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  PubMed  CAS  Google Scholar 

  • Steucek GL, Kountz HV (1970) Phloem mobility of magnesium. Plant Physiol 46:50–52

    Article  PubMed  CAS  Google Scholar 

  • Tisdale SF, Nelson WL, Beaton JD (1990) Soil fertility and fertilizers, 4th edn. Macmillan Publishing Company, New York

    Google Scholar 

  • Voogt W (1998) The growth of beefsteak tomato as affected by K/Ca ratios in the nutrient solution. Glasshouse Crops Research Station Naaldwijk

  • White PJ (1998) Calcium channels in the plasma membrane of root cells. Ann Bot 81:173–183

    Article  CAS  Google Scholar 

  • Weiss EA (1983) Oilseed crops. Chapter 6. Safflower. Longman Group Limited, Longman House, London

  • Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Ann Bot 83:175–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najoua Karray-Bouraoui.

Additional information

Communicated by W. Filek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhat, N., Rabhi, M., Falleh, H. et al. Interactive effects of excessive potassium and Mg deficiency on safflower. Acta Physiol Plant 35, 2737–2745 (2013). https://doi.org/10.1007/s11738-013-1306-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1306-x

Keywords

Navigation