Skip to main content
Log in

Comparative study of key phosphorus and nitrogen metabolizing enzymes in mycorrhizal and non-mycorrhizal plants of Dendrobium chrysanthum Wall. ex Lindl.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The role of mycorrhizal fungi in overcoming nutrient limitation to plant growth by enhancing nutrient acquisition, especially phosphorus (P) and nitrogen (N), is well documented. However, in orchids, the importance of mycorrhizal fungi in nutrient acquisition is not as extensively studied as in other plants. Therefore, an in vitro culture system to study the effects of mycorrhizal association on P and N metabolizing enzymes, viz., acid phosphatase, alkaline phosphatase, nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) in Dendrobium chrysanthum was developed. After 90 days of mycorrhizal treatment, activities of acid phosphatase, alkaline phosphatase, NR, NiR and GS were higher in mycorrhizal plantlets than in control plantlets. The hardened plantlets that were initially treated with mycorrhiza under in vitro conditions also showed higher activities of the enzymes investigated. These mycorrhizal plantlets showed higher survival (96.33 %), shoot length (3.7 cm) and shoot fresh weight (0.359 g) as compared to control after 120 days of hardening. The results presented in this study suggest that mycorrhizal association might have increased the assimilation of P and N in D. chrysanthum plantlets, indicating the importance of mycorrhiza in orchids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytol 101:657–665

    Article  Google Scholar 

  • Alexander C, Alexander IJ, Hadley G (1984) Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol 97:401–411

    Article  CAS  Google Scholar 

  • Alguacil M, Caravaca F, Diaz-Vivancos P, Hernandez JA, Roldan A (2006) Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant Soil 279:209–218

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Alvarez M, Huygen D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136:426–436

    Article  PubMed  CAS  Google Scholar 

  • Amaya-Carpio L, Davies FT Jr, Fox T, He C (2009) Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. Fistulosa. Photosynthetica 47(1):1–10

    Article  CAS  Google Scholar 

  • Asmar F, Gahoonia T, Nielsen N (1995) Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorous in the rhizosphere soil. Plant Soil 172:117–122

    Article  CAS  Google Scholar 

  • Azcon R, Tobar R (1998) Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa-Effect of drought stress. Plant Sci 133:1–8

    Article  CAS  Google Scholar 

  • Azcon R, Gomez M, Tobar R (1996) Physiological and nutritional responses by Lactuca sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biol Fertil Soils 22:156–161

    Article  Google Scholar 

  • Azcon R, Ruiz-Lozano JM, Rodriguez R (2001) Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (15N) under increasing N supply to the soil. Can J Bot 79:1175–1180

    Article  CAS  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 373–389

    Google Scholar 

  • Besford RT (1978) A phosphatase as a potential indicator of the phosphorus status of the glass house cucumber (Cucumis sativus). J Sci Food Agric 29:87–91

    Article  CAS  Google Scholar 

  • Beyrle H, Penningsfeld F, Hock B (1991) The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soo and Rhizoctonia sp. New Phytol 117:665–672

    Article  CAS  Google Scholar 

  • Bhadraiah B, Kankadurga VV, Ramarao P, Manoharachary C (1999) Effect of VAM fungi and rock phosphate on phosphatase activities in Terminalia arjuna. In: National Conference on Mycorrhiza. Section 3 (Poster): Physiology and Biochemistry, pp 5–7

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B 271:1799–1806

    Article  CAS  Google Scholar 

  • Bougoure JJ, Brundrett MC, Grierson PF (2010) Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri. New Phytol 186:947–956

    Article  PubMed  CAS  Google Scholar 

  • Bozzo GG, Raghothama KG, Plaxton WC (2002) Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate starved tomato (Lycopersicon esculentum) cell cultures. Eur J Biochem 269:6278–6280

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from the plant-fungus carbon and nitrogen transfer in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  PubMed  CAS  Google Scholar 

  • Cameron DD, Irene J, Jonathan RL, David JR (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    Article  PubMed  CAS  Google Scholar 

  • Campbell WH (1988) Higher plant nitrate reductase and its role in regulation of nitrate assimilation. Physiol Plant 74:214–219

    Article  CAS  Google Scholar 

  • Capaico LCM, Callow JA (1982) The enzymes of polyphosphate metabolism in vesicular arbuscular mycorrhizae. New Phytol 91:81–91

    Article  Google Scholar 

  • Carling DE, Pope EJ, Brainard KA, Carter DA (1999) Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Phytopathology 89:942–946

    Article  PubMed  CAS  Google Scholar 

  • Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32(9):1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Chang DC, Chou L (2007) Growth responses, enzyme activities, and component changes as influenced by Rhizoctonia orchid mycorrhiza on Anoectochilus formosanus Hayata. Bot Stud 48:445–451

    CAS  Google Scholar 

  • Chen J, Wang H, Guo SX (2011) Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22(4):297–307

    Article  PubMed  Google Scholar 

  • Chowdhery HJ (2001) Orchid diversity in North-east India. J Orchid Soc India 15:1–17

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81:43–52

    Article  CAS  Google Scholar 

  • De KK, Majumdar S, Sharma R, Sharma B (2006) Green pod culture and rapid micropropagation of Dendrobium chrysanthum Wall.—A horticultural and medicinal orchid. Folia Hortic 18:81–90

    Google Scholar 

  • Debouba M, Roufi-Dghimi HM, Suzuki A, Ghorbel MH, Gouia H (2007) Changes in growth and activity of enzymes involved in nitrate reduction and ammonium assimilation in tomato seedlings in response to NaCl stress. Ann Bot 99:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 7:163–172

    Article  Google Scholar 

  • Doley K, Jite PK (2012) Response of groundnut (‘JL-24’) cultivar to mycorrhiza inoculation and phosphorous application. Not Sci Biol 4(3):118–125

    CAS  Google Scholar 

  • Duff SMG, LeFebvre DD, Plaxton WC (1989) Purification and characterization of a phosphoenolpyruvate phosphatase from Brassica nigra suspension cells. Plant Physiol 90:734–741

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Luna AA, Davies FT (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscissic acid and growth of micropropagated chile ancho pepper (Capsicum annum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Faure S, Cliquet J, Thephany G, Boucaud J (1998) Nitrogen assimilation in Lolium perenne colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. New Phytol 138:411–417

    Article  Google Scholar 

  • Feuerherdt L, Petit S, Jusaitis M (2005) Distribution of mycorrhizal fungus associated with the endangered pink-lipped spider orchid (Arachnorchis (syn. Caladenia) behrii) at Warren Conservation Park in South Australia. NZ J Bot 43:367–371

    Article  Google Scholar 

  • Fries LLM, Pacovsky RS, Safir GR, Kaminski J (1998) Phosphorus effect on phosphatase activity in endomycorrhizal maize. Physiol Plant 103:162–171

    Article  CAS  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  Google Scholar 

  • Geneva M, Zehirov G, Djonova E, Kaloyanova N, Georgiev G, Stancheva I (2006) The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant Soil Environ 52(10):435–440

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1978) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. II. Soluble alkaline phosphatase specific to mycorrhizal infection in onion roots. Physiol Plant Pathol 12:45–53

    Article  CAS  Google Scholar 

  • Gogoi K, Kumaria S, Tandon P (2012) Ex situ conservation of Cymbidium eburneum Lindl.: a threatened and vulnerable orchid, by asymbiotic seed germination. 3 Biotech 2(4):337–343

  • Guescini M, Zeppa S, Pierleoni R, Sisti D, Stocchi L, Stocchi V (2007) The expression profile of the Tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition. Curr Genet 51:31–41

    Article  PubMed  CAS  Google Scholar 

  • Hadley G (1984) Uptake of [14C] glucose by asymbiotic and mycorrhizal orchid protocorms. New Phytol 96:263–273

    Article  Google Scholar 

  • Hajong S, Kumaria S, Tandon P (2012) Compatible fungi, suitable medium and appropriate developmental stage essential for stable association of Dendrobium chrysanthum. J Basic Microbiol. doi: 10.1002/jobm.201200411

  • Harley JL (1989) The significance of mycorrhiza. Mycol Res 92:129–130

    Article  Google Scholar 

  • Harvais G, Hadley G (1967) The relation between host and endophyte in orchid mycorrhiza. New Phytol 66:205–215

    Article  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22(6):531–567

    Article  Google Scholar 

  • Hoehamer CF, Mazur CS, Wolfe NL (2005) Purification and partial characterization of an acid phosphatase from Spirodela oligorrhiza and its affinity for selected organophosphate pesticides. J Agric Food Chem 53(1):90–97

    Article  PubMed  CAS  Google Scholar 

  • Hollander S (1932) Ernahrungs physiologische un-tersuchungen an wurzelpilzen saprophytisch leben-der Orchideen. Inaugural-dissertation, Bayerische Julius-Maximilian-Universitit, Wiirzburg

  • Huynh TT, Thomson R, Mclean CB, Lawrie AC (2009) Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Ann Bot 104:757–765

    Article  PubMed  CAS  Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagines and aspartate metabolism. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Marcel Dekker, New York, pp 49–109

    Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    Article  CAS  Google Scholar 

  • Joy KW (1969) Nitrogen metabolism of Lemna minor II. Enzymes of nitrate assimilation and some aspects of their regulation. Plant Physiol Lanc 44:849–853

    Article  CAS  Google Scholar 

  • Khalil S, Loynachan TE, Tabalabai MA (1994) Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48

    Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic Press, New York, p 811

    Google Scholar 

  • Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hortic 106:554–567

    Article  CAS  Google Scholar 

  • Kumaria S, Tandon P (2001) Orchids: the world’s most wondrous plant. In: Pathak P, Shekhar RN, Sharma M, Sood A (eds) Orchids: science and commerce. Bishen Singh MahendraPal Singh, Dehra Dun, pp 17–28

    Google Scholar 

  • Leake JR (1994) The biology of mycoheterotrophic (‘‘saprophytic’’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Leake JR (2004) Mycoheterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Curr Opin Plant Biol 7:422–428

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183):88–92

    Article  PubMed  CAS  Google Scholar 

  • Mathur A, Mathur AK, Verma P, Yadav S, Gupta ML, Darokar MP (2008) Biological hardening and genetic fidelity testing of micro-cloned progeny of Chlorophytum borivilianum. Afr J Biotechnol 7:1046–1053

    CAS  Google Scholar 

  • Nisha MC, Kumar SR (2010) Influence of arbuscular mycorrhizal fungi on biochemical changes in Wedilla chinensis (Osbeck) Merril. Anc Sci Life 29(3):26–29

    PubMed  Google Scholar 

  • Osagie AU (1992) The yam tuber in storage. Postharvest Research unit, University of Benin, Benin, pp 80–84

    Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Pacovsky RS, Da Silva P, Carvalho MT, Tsai SM (1991) Growth and nutrient allocation in Phaseolus vulgaris L. colonised with endomycorrhizae or Rhizobium. Plant Soil 132:127–137

    Article  CAS  Google Scholar 

  • Panwar J, Vyas A (2002) AM fungi: a biological approach towards conservation of endangered plants in Thar desert, India. Curr Sci 82(5):576–578

    CAS  Google Scholar 

  • Paul S, Kumaria S, Tandon P (2012) An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of North-east India. AoB Plants 2012:plr032. doi:10.1093/aobpla/plr032

  • Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2012) Analysis of fungal diversity in Orchis tridentata Scopoli. Cent Eur J Biol 7(5):850–857

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans B Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pinior A, Grunewaldt-Stocker G, Alten HV, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605

    Article  PubMed  CAS  Google Scholar 

  • Rabie GH, Almadani AM (2005) Role of bio inoculants in development of salt tolerance of Vicia faba plant under salinity stress. Afr Biotechnol J 4(3):210–222

    CAS  Google Scholar 

  • Ramirez JN, Delcampo FF, Paneque A, Losada M (1966) Ferrodoxin nitrite reductase from spinach. Biochem Biophys Acta 118:58–71

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Rasmussen HN, Anderson TF, Johansen B (1990) Temperature sensitivity of in vitro germination and seedling development of Dactylorhiza majalis (Orchidaceae) with and without mycorrhizal fungus. Plant, Cell Environ 13:171–177

    Article  Google Scholar 

  • Ratti N, Verma HN, Gautam SP (2010) Effect of Glomus species on physiology and biochemistry of Catharanthus roseus. Indian J Microbiol 50:355–360

    Article  PubMed  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems-Nature’s response to the ‘‘Law of the Minimum’’. In: Hawksworth DL (ed) Frontiers in Mycology. CAB International, pp 101–130

  • Ruiz-Lozano JM, Azcon R (1996) Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agric Ecosyst Environ 60:175–181

    Article  CAS  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods. New Age International Publishers, India

    Google Scholar 

  • Selvaraj T (1998) Studies on mycorrhizal and rhizobial symbioses on tolerance of tannery effluent treated Prosopis juliflora. Ph.D. Thesis, University of Madras, Chennai, India

  • Singh SK, Minakshi G, Khawale RN, Patel VB, Krishna H, Saxena AK (2004) Mycorrhization as an aid for biohardening of in vitro raised Grape (Vitis vinifera L.) plantlets. In: ISHS Acta Horticulturae 662: VII. International Symposium on Temperate Zone Fruits in the Tropics and Subtropics

  • Smarrelli J Jr, Campbell WH (1983) Heavy metal inactivation and chelator stimulation of higher plant nitrate reductase. Biochem Biophys Acta 742:435–445

    Article  Google Scholar 

  • Smith SE (1966) Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytol 65:488–499

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press Ltd, London

    Google Scholar 

  • Smith SE, John BJ, Smith FA, Nicholas DJD (1985) Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum and Allium cepa L.: effects of mycorrhizal infection and phosphate nutrition. New Phytol 99:211–227

    Article  CAS  Google Scholar 

  • Srinath J, Bagyaraj DJ, Satyanarayana BN (2003) Enhanced growth and nutrition of micropropagated Ficus benjamina to Glomus mosseae coinoculated with Trichoderma harzianum and Bacillus coagulans. World J Microbiol Biotech 19:69–72

    Article  CAS  Google Scholar 

  • Suthar RK, Purohit SD (2012) Biopriming of micropropagated Boswellia serrata Roxb. plantlets-Role of endophytic root fungus Piriformospora indica. Indian J Biotechnol 11:304–308

    CAS  Google Scholar 

  • Tadano T, Ozawa K, Sakai H, Osaki M, Matsui H (1993) Secretion of acid phosphatase by the roots of crop plants under phosphorus deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil 155(156):95–98

    Article  Google Scholar 

  • Thiagarajan TR, Ahmad MH (1994) Phosphatase activity and cytokinin content in cowpeas (Vigna unguiculata) inoculated with a vesicular arbuscular mycorrhizal fungus. Biol Fert Soils 17:51–56

    Article  CAS  Google Scholar 

  • Tobar RM, Azcon R, Barea JM (1994a) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water stressed conditions. New Phytol 126:119–122

    Article  Google Scholar 

  • Tobar RM, Azcon R, Barea JM (1994b) The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 4:105–108

    Article  Google Scholar 

  • Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the mycoheterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol 160(2):391–401

    Article  CAS  Google Scholar 

  • Vincent JB, Crowder MW, Averill BA (1992) Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci 17:105–110

    Article  PubMed  CAS  Google Scholar 

  • Vyas S, Nagari R, Purohit SD (2008) Root colonization and growth enhancement of micropropagated Feronia limonia (L.) Swingle by Piriformospora indica-A cultivable root endophyte. Int J Plant Dev Biol 2:128–132

    Google Scholar 

  • Warcup JH (1975) Factors affecting symbiotic germination of orchid seeds. In: Sanders RE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 87–104

    Google Scholar 

  • Yam TW, Arditti J, Weatherhead MA (1989) The use of darkening agents in seed germination and tissue culture media for orchids: a review. J Orchid Soc India 3:35–39

    Google Scholar 

  • Yoder JA, Zettler LW, Stewart SL (2000) Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy. Plant Sci 156:145–150

    Article  PubMed  CAS  Google Scholar 

  • Yonzone R, Lama D, Bhujel RB, Rai S (2012) Orchid species diversity of Darjeeling Himalaya of India. Int J Pharmacy Life Sci 3(3):1533–1550

    Google Scholar 

Download references

Acknowledgments

S. Hajong would like to acknowledge the University Grants Commission (UGC) for awarding her Research Fellow for Meritorious students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumaria.

Additional information

Communicated by M. J. Reigosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Supplementary material 2 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajong, S., Kumaria, S. & Tandon, P. Comparative study of key phosphorus and nitrogen metabolizing enzymes in mycorrhizal and non-mycorrhizal plants of Dendrobium chrysanthum Wall. ex Lindl.. Acta Physiol Plant 35, 2311–2322 (2013). https://doi.org/10.1007/s11738-013-1268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1268-z

Keywords

Navigation