Skip to main content
Log in

Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To develop an optimal bioprocess for the production of tanshinone which is mainly used for the treatment of cardiocerebral vascular disease, the tanshinone biosynthetic pathway regulation must be better understood. In this paper, expression of tanshinone biosynthetic pathway related genes as well as tanshinone accumulation in Salvia miltiorrhiza hairy root cultures were investigated, in response to biotic and abiotic elicitors, respectively. Our results showed tanshinone accumulation in S. miltiorrhiza hairy roots was highly regulated by the coordination of the expression of several genes involved in tanshinone biosynthesis pathway. Our results showed a positive correlation between gene expression and tanshinone accumulation, suggesting that tanshinone accumulation may be the result of the coexpression up-regulation of several genes involved in tanshinone biosynthesis under the treatment of various elicitors. Meantime, SmHMGR, SmDXS2, SmFPPS, SmGGPPS and SmCPS were identified as the potential key enzymes in the pathway for targeted metabolic engineering to increase accumulation of tanshinone in S. miltiorrhiza hairy roots. This is the first report integrating comprehensively the transcript and metabolite biosynthesis of tanshinone in S. miltiorrhiza hairy roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

T2A:

Tanshinone IIA

CT:

Cryptotanshinone

BABA:

β-Aminobutyric acid

MJ:

Methyl jasmonate

YE:

Yeast extract

fw:

Fresh weight

SA:

Salicylic acid

DW:

Dry weight

RT:

Reverse transcriptase

AACT:

Acetyl-CoA C-acetyltransferase

HMGS:

3-Hydroxy-3-methylglutaryl-CoA synthase

HMGR:

3-Hydroxy-3-methylglutaryl-CoA reductase

MK:

Mevalonate kinase

PMK:

5-Phosphomevalonate kinase

MDC:

Mevalonate 5-diphosphate decarboxylase

DXS:

1-Deoxy-d-xylulose-5-phosphate synthase

DXR:

1-Deoxy-d-xylulose-5-phosphate reductoisomerase

MCT:

2-C-methyl-d-erythritol-4-phosphate cytidyl transferase

CMK:

4-(cytidine 5-diphospho)-2-C-methyl-d-erythritol kinase

MECPS:

2-C-methylerythritol 2,4-cyclodiphosphate synthase

HDS:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase

HDR:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase

IPPI:

Isopentenyl-diphosphate delta-isomerase

GPPS:

Geranyl diphosphate synthase

FPPS:

Farnesyl diphosphate synthase

GGPPS:

Geranylgeranyl diphosphate synthase

CPS:

Copalyl diphosphate synthase

KSL:

Kaurene synthase-like

References

  • Carretero-Paulet L, Cairó A, Botella-Pavía P, Besumbes O, Campos N, Boronat A, Rodríguez-Concepción M (2006) Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Mol Biol 62:683–695

    Article  PubMed  CAS  Google Scholar 

  • Chang WL, Chen CF (1991) Cytotoxic activities of tanshinone against human carcinoma cell line. Am J China Med 19:207

    Article  Google Scholar 

  • Chapell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthesis pathway in plants. Annu Rev Plant Physiol Plant Mol 46:521–547

    Article  Google Scholar 

  • Chen AJ, Li CH, Gao WH, Hua ZD, Chen XG (2005) Application of non-aqueous micellar electrokinetic chromatography to the analysis of active components in Radix Salvia miltiorrhiza and its medicinal preparations. J Pharm Biomed 37:811–814

    Article  CAS  Google Scholar 

  • Cui GH, Huang LQ, Tang XJ, Zhao JX (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Engprasert S, Taura F, Kawamukai M, Shoyama Y (2004) Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq. BMC Plant Biol 4:1–8

    Article  Google Scholar 

  • Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909

    Article  PubMed  Google Scholar 

  • Floß DS, Hause B, Lange PR, Küster H, Strack D, Walter MH (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56:86–100

    Article  PubMed  Google Scholar 

  • Gao W, Cui GH, Kong JQ, Cheng KD, Wang W, Yuan Y, Huang LQ (2008) Optimizing expression and purification of recombinant Salvia miltiorrhiza copalyl diphosphate synthase protein in E. coli and preparation of rabbit antiserum against SmCPS. Acta Pharm Sinica 43:766–772

    CAS  Google Scholar 

  • Gao W, Hillwig ML, Huang LQ, Cui GH, Wang XY, Kong JQ, Yang B, Peters RJ (2009) A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 11:5170–5173

    Article  PubMed  CAS  Google Scholar 

  • Ge XC, Wu JY (2005a) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168:487–491

    Article  CAS  Google Scholar 

  • Ge XC, Wu JY (2005b) Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by β-aminobutyric acid. Appl Microbiol Biotechnol 68:183–188

    Article  PubMed  CAS  Google Scholar 

  • Ha SH, Kim JB, Hwang YS, Lee SW (2003) Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicum annuum). Biochim Biophys Acta 1625:253–260

    PubMed  CAS  Google Scholar 

  • Hefner J, Ketchum REB, Croteau R (1998) Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys 360:62–74

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Luo GA, Zhao ZZ, Jiang ZH (2005) Quality Assessment of Radix Salvia Miltiorrhiza. Chem Pharm Bull 53:481–484

    Article  PubMed  CAS  Google Scholar 

  • Ji YL, He JT, Zhou QH, Chen J, Li Q, Zhu J, Liu HY (2008) The inhibiting effect and its molecular mechanism of Tanshinone on human lung cancer cell line in vitro. Chin J Lung Cancer 11:202–205

    CAS  Google Scholar 

  • Jiang JH, Kai GY, Cao XY, Chen FM, He DN, Liu Q (2006) Molecular cloning of a HMG-CoA reductase gene from Eucommia ulmoides Oliver. Biosci Rep 26:171–181

    Article  PubMed  CAS  Google Scholar 

  • Kai GY, Liao P, Zhang T, Zhou W, Wang J, Xu H, Liu YY, Zhang L (2010) Characterization, expression profiling and functional identification of a gene encoding geranylgeranyl diphosphate synthase from Salvia miltiorrhiza. Biotechnol Bioproc E 15:236–245

    Article  CAS  Google Scholar 

  • Kai GY, Xu H, Zhou C, Liao P, Xiao JB, Luo XQ, You LJ, Zhang L (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13:319–327

    Article  PubMed  CAS  Google Scholar 

  • Liao P, Zhou W, Zhang L, Wang J, Yan XM, Zhang Y, Zhang R, Li L, Zhou GY, Kai GY (2009) Molecular cloning, characterization and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Salvia miltiorrhiza. Acta Physiol Plant 31:565–572

    Article  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22:503–513

    Article  PubMed  CAS  Google Scholar 

  • Lv DM, Yuan Y, Huang LQ, Liang RX, Qiu DY (2008) Studies on accumulation of effective components of Salvia miltiorrhiza hairy roots in different culture periods. China J Chin Materia Medica 33:1078–1080

    Google Scholar 

  • Muñoz-Bertomeu J, Arrillaga I, Ros R, Segura J (2006) Up-regulation of 1-deoxy-D-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol 142:890–900

    Article  PubMed  Google Scholar 

  • Nims E, Dubois CP, Roberts SC, Walker EL (2006) Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng 8:385–394

    Article  PubMed  CAS  Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Wang XY, Cui GH, Huang LQ, Qiu DY (2007a) Effects of methyl jasmonate on accumulation and release of tanshinones in suspension cultures of Salvia miltiorrhiza hairy root. China J Chin Materia Medica 32:300–302

    CAS  Google Scholar 

  • Wang XY, Cui GH, Huang LQ, Qiu DY (2007b) Effects of elicitors on accumulation of tanshinones in suspension cultures of Salvia miltiorrhiza hairy root. China J Chin Materia Medica 32:976–978

    CAS  Google Scholar 

  • Wang XY, Cui GH, Huang LQ, Gao W, Yuan Y (2008) A full length cDNA of 4-(cytidine 5-diphospho)-2-C-methyl-D- erythritol kinase cloning and analysis of introduced gene expression in Salvia miltiorrhiza. Acta Pharm Sinica 43:1251–1257

    CAS  Google Scholar 

  • Wang XY, Cui GH, Gao W, Huang LQ (2009) New method of “ingredient difference phonetypical cloning” for functional gene cloning from medicinal plants. China J Chin Materia Medica 34:14–17

    CAS  Google Scholar 

  • Wu JY, Shi M (2008) Ultrahigh diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots. Appl Microbiol Biotechnol 78:441–448

    Article  PubMed  CAS  Google Scholar 

  • Wu SJ, Shi M, Wu JY (2009) Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza (Chinese sage) hairy roots. Biotechnol Appl Biochem 52:89–95

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88:437–449

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Zhang L, Zhou CC, Xiao JB, Liao P, Kai GY (2010) Metabolic regulation and genetic engineering of pharmaceutical component tanshinone biosynthesis in Salvia miltiorrhiza. J Med Plants Res 4:2591–2597

    Google Scholar 

  • Yan Q, Hu ZD, Tan RX, Wu JY (2005) Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119:416–424

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Hu ZD, Wu JY (2006) Synergistic effects of biotic and abiotic elicitors on the production of tanshinones in Salvia miltiorrhiza hairy root culture. China J Chin Materia Medica 31:188–190

    CAS  Google Scholar 

  • Yan XM, Zhang L, Wang J, Liao P, Zhang Y, Zhang R, Kai GY (2009) Molecular characterization and expression of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza. Acta Physiol Plant 31:1015–1022

    Article  CAS  Google Scholar 

  • Zhang CH, Yan Q, Cheuk J, Wu JY (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ and nutrient feeding. Planta Med 70:147–151

    Article  PubMed  CAS  Google Scholar 

  • Zhao JL, Zhou LG, Wu JY (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide-protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45:1517–1522

    Article  CAS  Google Scholar 

  • Zhou LM, Zuo Z, Chow MSS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Shen YF, Chen JF, Dai LM, Kai GY (2007) Research and development of biotechnology of Salvia miltiorrhiza Bunge. J Biol (in Chinese). 24:48–51

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Fund (30900110), Shanghai Science and Technology Committee Project (10JC1412000, 09QH1401900, 06QA14038, 08391911800, 073158202, 075405117, 065458022, 05ZR14093), Project from Ministry of Science and Technology of China (NC2010AE0075, NC2010AE0372), Zhejiang Provincial Natural Science Fund (Y2080621), Shanghai Education Committee Fund (09ZZ138, 06DZ015, J50401), Fujian Science and Technology Committee Key Special Project (2008NZ0001-4), National Transgenic Organism New Variety Culture Key Project (2009ZX08012-002B), Project from Shanghai Normal University (SK201230, SK201236, SK200830). We gratefully thank Kyle Andrew Schneider (University of Dayton, Ohio, USA) for grammatical correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Kai.

Additional information

Communicated by B. Borkowska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 124 kb)

Supplementary material 2 (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kai, G., Liao, P., Xu, H. et al. Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures. Acta Physiol Plant 34, 1421–1433 (2012). https://doi.org/10.1007/s11738-012-0940-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0940-z

Keywords

Navigation