Skip to main content
Log in

Prediction of selected biodiesel fuel properties using artificial neural network

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Biodiesel is an alternative fuel to replace fossilbased diesel fuel. It has fuel properties similar to diesel which are generally determined experimentally. The experimental determination of various properties of biodiesel is costly, time consuming and a tedious process. To solve these problems, artificial neural network (ANN) has been considered as a vital tool for estimating the fuel properties of biodiesel, especially from its fatty acid (FA) composition. In this study, four ANNs have been designed and trained to predict the cetane number (CN), flash point (FP), kinematic viscosity (KV) and density of biodiesel using ANN with logsig and purelin transfer functions in the hidden layer of all the networks. The five most prevalent FAs from 55 feedstocks found in the literature utilized as the input parameters for the model are palmitic, stearic, oleic, linoleic and linolenic acids except for density network with a sixth parameter (temperature). Other FAs that are present in the biodiesels have been considered based on the number of carbon atom chains and the level of saturation. From this study, the prediction accuracy and the average absolute deviation of the networks are CN (96.69%; 1.637%), KV (95.80%; 1.638%), FP (99.07%; 0.997%) and density (99.40%; 0.101%). These values are reasonably better compared to previous studies on empirical correlations and ANN predictions of these fuel properties found in literature. Hence, the present study demonstrates the ability of ANN model to predict fuel properties of biodiesel with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achten WMJ, Verchot L, Franken Y J, Mathijs E, Singh V P, Aerts R, Muys B. Jatropha bio-diesel production and use. Biomass and Bioenergy, 2008, 32(12): 1063–1084

    Article  Google Scholar 

  2. El Diwani G, Attia N K, Hawash S I. Development and evaluation of biodiesel fuel and by-products from Jatropha oil. International Journal of Environmental Science and Technology, 2009, 6(2): 219–224

    Article  Google Scholar 

  3. Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 2009, 86(11): 2273–2282

    Article  Google Scholar 

  4. Kondamudi N, Strull J, Misra M, Mohapatra S K. A green process for producing biodiesel from feather meal. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6163–6166

    Article  Google Scholar 

  5. Mariod A, Klupsch S, Hussein I H, Ondruschka B. Synthesis of alkyl esters from three unconventional Sudanese oils for their use as biodiesel. Energy & Fuels, 2006, 20(5): 2249–2252

    Article  Google Scholar 

  6. Lin C Y, Fan C L. Fuel properties of biodiesel produced from Camellia Oleifera Abel oil through supercritical-methanol transesterification. Fuel, 2011, 90(6): 2240–2244

    Article  Google Scholar 

  7. Alptekin E, Canakci M. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renewable Energy, 2008, 33(12): 2623–2630

    Article  Google Scholar 

  8. Lin C, Li R. Fuel properties of biodiesel produced from the crude fish oil from the soapstock of marine fish. Fuel Processing Technology, 2009, 90(1): 130–136

    Article  Google Scholar 

  9. Giwa S, Layeni A, Ogunbona C. Synthesis and characterization of biodiesel from industrial starch production byproduct. Energy and Environmental Engineering Journal, 2012, 1(1): 45–51

    Google Scholar 

  10. Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 2005, 86(10): 1059–1070

    Article  Google Scholar 

  11. Ramos M J, Fernández C M, Casas A, Rodríguez L, Pérez A. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 2009, 100(1): 261–268

    Article  Google Scholar 

  12. Cheenkachorn K. Predicting properties of biodiesel using statistical models and artificial neural networks. In: Proceedings of the Joint International Conference on Sustainable Energy and Environment. Hua Hin, Thailand, 2004, 176–179

    Google Scholar 

  13. Allen C A W, Watts K C, Ackman R G, Pegg M J. Predicting the viscosity of biodiesel fuels from their fatty acid ester composition. Fuel, 1999, 78(11): 1319–1326

    Article  Google Scholar 

  14. Ramírez-Verduzco L F, Rodríguez-Rodríguez J E, Jaramillo-Jacob A R. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 2012, 91(1): 102–111

    Article  Google Scholar 

  15. Krisnangkura K, Yimsuwan T, Pairintra R. An empirical approach in predicting biodiesel viscosity at various temperatures. Fuel, 2006, 85(1): 107–113

    Article  Google Scholar 

  16. Krisnangkura K, Sansa-ard C, Aryusuk K, Lilitchan S, Kittiratanapiboon K. An empirical approach for predicting kinematic viscosities of biodiesel blends. Fuel, 2010, 89(10): 2775–2780

    Article  Google Scholar 

  17. Piloto-Rodríguez R, Sánchez-Borroto Y, Lapuerta M, Goyos-Pérez L, Verhelst S. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Conversion and Management, 2013, 65: 255–261

    Article  Google Scholar 

  18. Bamgboye A I, Hansen A C. Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 2008, 22: 21–29

    Google Scholar 

  19. Gopinath A, Puhan S, Nagarajan G. Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renewable Energy, 2009, 34(7): 1806–1811

    Article  Google Scholar 

  20. Shivakumar SP, Srinivas P P, Shrinivasa R B R, Samaga B S. Performance and emission characteristics of a 4 stroke C.I engine operated on honge methyl ester using artificial neural network. ARPN Journal of Engineering and Applied Sciences, 2010, 5(6): 83–94

    Google Scholar 

  21. Ramadhas A S, Jayaraj S, Muraleedharan C, Padmakumari K. Artificial neural networks used for the prediction of the cetane number of biodiesel. Renewable Energy, 2006, 31(15): 2524–2533

    Article  Google Scholar 

  22. Baroutian S, Kheireddine Aroua M, Abdul Raman A A, Nik Sulaiman N M. Estimation of vegetable oil-based ethyl esters biodiesel densities using artificial neural networks. Journal of Applied Sciences, 2008, 8(17): 3005–3011

    Article  Google Scholar 

  23. Meng X, Jia M, Wang T. Neural network prediction of biodiesel kinematic viscosity at 313 K. Fuel, 2014, 121: 133–140

    Article  Google Scholar 

  24. Balabin R M, Lomakina E I, Safieva R Z. Neural network approach to biodiesel analysis: analysis of biodiesel density, kinematic viscosity, methanol and water content using near infrared (NIR) spectroscopy. Fuel, 2011, 90(5): 2007–2015

    Article  Google Scholar 

  25. Singh S P, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable & Sustainable Energy Reviews, 2009, 14(1): 200–216

    Article  Google Scholar 

  26. Rashid U, Anwar F, Moser B R, Ashraf S. Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and Bioenergy, 2008, 32(12): 1202–1205

    Article  Google Scholar 

  27. Sarin R, Sharma M, Sinharay S, Malhotra R K. Jatropha–Palm biodiesel blends: an optimum mix for Asia. Fuel, 2007, 86(10–11): 1365–1371

    Article  Google Scholar 

  28. Canakci M, Sanli H. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5): 431–441

    Article  Google Scholar 

  29. Martín R S, Cerda T D L, Uribe A, Basilio P, Jordán M, Prehn D, Gebauer M. Evaluation of guindilla oil (Guindilla trinervis Gillies ex Hook. et Arn.) for biodiesel Production. Fuel, 2010, 89(12): 3785–3790

    Article  Google Scholar 

  30. Anwar F, Rashid U, Ashraf M, Nadeem M. Okra (Hibiscus esculentus) seed oil for biodiesel production. Applied Energy, 2010, 87(3): 779–785

    Article  Google Scholar 

  31. Nabi MN, Hogue SMN, Akhter MS. Karanja (Pongamia Pinnata) biodiesel production in Bangladesh, characterization of karanja biodiesel and its effect on diesel emissions. Fuel Processing Technology, 2009, 90(9): 1080–1086

    Article  Google Scholar 

  32. Leung D Y C, Wu X, Leung M K H. A review on biodiesel production using catalyzed transesterification. Applied Energy, 2010, 87(4): 1083–1095

    Article  Google Scholar 

  33. Sivakumar P, Anbarasu K, Renganathan S. Bio-diesel production by alkali catalyzed transesterification of dairy waste scum. Fuel, 2011, 90(1): 147–151

    Article  Google Scholar 

  34. Öner C, Altun S. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Applied Energy, 2009, 86(10): 2114–2120

    Article  Google Scholar 

  35. Keskin A, Guru M, Altiparmak D. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Bioresource Technology, 2008, 99(14): 6434–6438

    Article  Google Scholar 

  36. Dorado M P, Ballesteros E, Lo’pez F J, Mittelbach M. Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Energy & Fuels, 2004, 18(1): 77–83

    Article  Google Scholar 

  37. Aliyu B, Agnew B, Douglas S. Croton megalocarpus (musine) seeds used as a potential source of biodiesel. Biomass and Bioenergy, 2010, 34(10): 1495–1499

    Article  Google Scholar 

  38. Enweremadu C C, Mbarawa M M. Technical aspects of production and analysis of biodiesel from used cooking oil—a review. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2205–2224

    Article  Google Scholar 

  39. Yang F X, Su Y Q, Li X H, Zhang Q, Sun R C. Studies on the preparation of biodiesel from Zanthoxylum bungeanum maxim seed oil. Journal of Agricultural and Food Chemistry, 2008, 56(17): 7891–7896

    Article  Google Scholar 

  40. Zhang S, Zu Y G, Fu Y J, Luo M, Zhang D Y, Efferth T. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource Technology, 2010, 101(3): 931–936

    Article  Google Scholar 

  41. Sahoo P K, Das L M. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oil. Fuel, 2009, 88(9): 1588–1594

    Article  Google Scholar 

  42. Yang F X, Su Y Q, Li X H, Zhang Q, Sun R C. Preparation of biodiesel from Idesia polycarpa var. Vestita fruit oil. Industrial Crops and Products, 2009, 29(2–3): 622–628

    Article  Google Scholar 

  43. Schinas P, Karavalakis G, Davaris C, Anastopoulos G, Karonis D, Zannikos F, Stournas S, Lois E. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass and Bioenergy, 2009, 33(1): 44–49

    Article  Google Scholar 

  44. Moser B R. Biodiesel production, properties, and feedstocks. In Vitro Cellular & Developmental Biology–Plant, 2009, 45(3): 229–266

    Article  Google Scholar 

  45. Moser B R, Vaughn S F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 2010, 101(2): 646–653

    Article  Google Scholar 

  46. Rashid U, Anwar F. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy & Fuels, 2008, 22(2): 1306–1312

    Article  Google Scholar 

  47. Santos I C F, Carvalho S H V, Solleti J I, Salles WFDL, Salles K T D S D L, Meneghetti S M P. Studies of Terminalia catappa L. oil: characterization and biodiesel production. Bioresource Technology, 2008, 99(14): 6545–6549

    Article  Google Scholar 

  48. Joshi H, Moser B R, Toler J, Smith W F, Walker T. Effects of blending alcohols with poultry fat methyl esters on cold flow properties. Renewable Energy, 2010, 35(10): 2207–2210

    Article  Google Scholar 

  49. Candeia R A, Silva M C D, Carvalho-Filho J R, Brasilino M G A, Bicudo T C, Santos I M G, Souza A G. Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 2009, 88(4): 738–743

    Article  Google Scholar 

  50. Sarin R, Sharma M, Khan A A. Studies on Guizotia abyssinica L. oil: biodiesel synthesis and process optimization. Bioresource Technology, 2009, 100(18): 4187–4192

    Article  Google Scholar 

  51. Chakrabarti M H, Ahmad R. Investigating possibility of using least desirable edible oil of eruca sativa L. in biodiesel production. Pakistan Journal of Botany, 2009, 41: 481–487

    Google Scholar 

  52. Kafuku K, Mbarawa M. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel, 2010, 89(9): 2556–2560

    Article  Google Scholar 

  53. Sharma Y C, Singh B. An idea feedstocks, kusum (Schleichera Triguga) for preparation of biodiesel: optimization of parameters. Fuel, 2010, 89(7): 1470–1474

    Article  Google Scholar 

  54. da Silva J P V, Serra T M, Gossmann M, Wolf C R, Meneghetti M R, Meneghetti S M P. Moringa oleifera oil studies of characterization and biodiesel Production. Biomass and Bioenergy, 2010, 34 (10): 1527–1530

    Article  Google Scholar 

  55. Usta N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass and Bioenergy, 2005, 28 (1): 77–86

    Article  Google Scholar 

  56. Santos N A, TavaresML A, Rosenhaim R, Silva F C, Fernandes V J Jr, Santos I M G, Souza A G. Thermogravimetric and calorimetric evaluation of babassu biodiesel obtained by the methanol route. Journal of Thermal Analysis and Calorimetry, 2007, 87(3): 649–652

    Article  Google Scholar 

  57. Tiwari A K, Kumar A, Raheman H. Biodiesel production from Jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass and Bioenergy, 2007, 31(8): 569–575

    Article  Google Scholar 

  58. Sinha S, Agarwal A K, Garg S. Biodiesel development from rice bran oil: transesterification process optimization and fuel characterization. Energy Conversion and Management, 2008, 49(5): 1248–1257

    Article  Google Scholar 

  59. Nakpong P, Wootthikanokkhan S. Roselle (Hibiscus sabdariffa L.) oil as an alternative feedstock for biodiesel production in Thailand. Fuel, 2010, 89(8): 1806–1811

    Article  Google Scholar 

  60. Saxena P, Jawale S, Joshipura M H. A review on prediction of properties of biodiesel and blends of biodiesel. Procedia Engineering, 2013, 51: 395–402

    Article  Google Scholar 

  61. Najafi G, Ghobadian B, Yusaf T F, Rahimi H. Combustion analysis of a CI engine performance using waste cooking biodiesel fuel with an artificial neural network aid. American Journal of Applied Sciences, 2007, 4(10): 756–764

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon O. Giwa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, S.O., Adekomaya, S.O., Adama, K.O. et al. Prediction of selected biodiesel fuel properties using artificial neural network. Front. Energy 9, 433–445 (2015). https://doi.org/10.1007/s11708-015-0383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-015-0383-5

Keywords

Navigation