Skip to main content
Log in

Development and evaluation of biodiesel fuel and by-products from jatropha oil

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Biodiesel is an environmentally friend renewable diesel fuel alternative. Jatropha seeds can be a feedstock to produce a valuable amount of oil to be converted to biodiesel using transesterification reaction. Jatropha plant has been successfully grown in southern Egypt using primary treated municipal wastewater for its irrigation. Abench scale production of biodiesel from Jatropha oil (using methyl alcohol and sodium hydroxide as catalyst) was developed with methyl esters yield of 98 %. Biodiesel was produced on a pilot scale based on the bench scale experiment results with almost the same methyl esters yield of 98 %. The produced biodiesel was evaluated as a fuel and compared with petroleum diesel according to its physical and chemical parameters such as viscosity, flash point, pour point, cloud point, carbon residue, acid value and calorific value. The experimental techniques and product evaluation results show that such properties of the produced biodiesel are near to that of petroleum diesel. A mass balance representing the transesterification process is presented in this study. Glycerol of 85 % purity was produced and evaluated as a valuable byproduct of the process. Free fatty acids and sodium phosphate salts which have industrial interesting are also produced and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alptekin, E.; Canakci, M., (2008). Characterization of the key fuel properties of methyl ester-diesel fuel blends. Fuel, 88(1), 75–80 (6 pages).

    Article  Google Scholar 

  • Antolin, G.; Tinaut, F. V.; Briceno, Y.; Castano, V.; Perez, C.; Ramirez, A. I., (2002). Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Tech., 83(2), 111–114 (4 pages).

    Article  CAS  Google Scholar 

  • Baldwin, J. D.; Kilmowski, C. H.; Keesy, M. A., (1982). Fuel additives for vegetable oil-fueled compression ignition engines. Vegetable oil fuels. Proceedings of the international conference on plant and vegetable oils as fuels, ASAE, 82(4), 224.

    Google Scholar 

  • Boehman, A. L., (2005). Foreword biodiesel production and processing. Fuel Process. Tech., 86(10), 1057–1058 (2 pages).

    Article  CAS  Google Scholar 

  • Bouaid, A.; Diaz, Y.; Martinez, M.; Aracil, J., (2005). Pilot plant studies of biodiesel production using Brassica carinata as raw material. Catal. Today. 106(1–4), 193–196 (4 pages).

    Article  CAS  Google Scholar 

  • Dorado, M. P.; Ballesteros, E.; Lopez, F. J.; Mittelbach, M., (2004). Optimization of alkali-catalyzed transesterification of brassica oil for biodiesel production. Energ. Fuel, 18(1), 77–83 (7 pages).

    Article  CAS  Google Scholar 

  • Encinar, J. M.; Gonzalez, J. F.; Rodriguez-Reinares, A., (2007). Ethanolysis of used frying oils, biodiesel preparation and characterization. Fuel Proc. Tech., 88(5), 513–522 (10 pages).

    Article  CAS  Google Scholar 

  • Fuls, J.; Hawkins, C. S.; Hugo, F. J. C., (1984). Tractor engine performance on sunflower oil fuel. J. Agri. Eng., 30, 29–35 (7 pages).

    Article  Google Scholar 

  • Haas, M. J., (2005). Improving the economics of biodiesel production through the use of low value lipids as feedstock: Vegetable oil soapstock. Fuel Proc. Tech., 86(10) 1087–1096 (10 pages).

    Article  CAS  Google Scholar 

  • Kayasiri, P.; Jeyashoke, N.; Krisangkura, K., (1996). Survey of seed oils for use as diesel fuels. J. Am. Oil Chem. Soc., 73(4), 471–474 (4 pages).

    Article  Google Scholar 

  • Knothe, G.; Steidley, K. R., (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components, Fuel, 84(9), 1059–1065 (7 pages).

    Article  CAS  Google Scholar 

  • Ma, F.; Hanna, M. A., (1999). Biodiesel production: A review. Bioresour. Tech., 70(1) 1–15 (15 pages)

    Article  CAS  Google Scholar 

  • Meher, L. C.; Dharmagadda, S. S. V.; Naik, S. N., (2006a). Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour. Tech., 97(12), 1392–1397 (6 pages)

    Article  CAS  Google Scholar 

  • Meher, L. C.; Sagar, D. V.; Naik S. N., (2006b). Technical aspects of biodiesel production by trasesrerification: A review. Renew Sust. Energ. Rev., 10(3) 248–268 (21 pages)

    Article  CAS  Google Scholar 

  • Peterson, C. L.; Wanger, G. L.; Auld, D. L., (1983). Vegetable oil substitutes for diesel fuel. T. ASAE, 26,(2), 322–327 (6 pages)

    Article  CAS  Google Scholar 

  • Phan, A. N.; Phan, T. M., (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18), 3490–3496 (7 pages)

    Article  CAS  Google Scholar 

  • Ryan, T. W.; Dodge, G.; Callahan, T. J., (1984). The effects of vegetable oil properties on injection and combustion in two different diesel engines. J. Am. Oil Chem. Soc., 61(10) 1610–1619 (10 pages)

    Article  CAS  Google Scholar 

  • Saifuddin, N.; Chua, K. H., (2004). Production of ethyl ester (biodiesel) from used frying oils: Optimization transesterification process using microwave irradiation. Malaysian J. Chem., 6(1) 77–82 (6 pages)

    Google Scholar 

  • Schlautman, N. J.; Schinstock, J. L.; Hanna M. A., (1986). Unrefined expelled soybean oil performance in a diesel engine. T. ASAE, 29(1), 70–73 (4 pages)

    Article  Google Scholar 

  • Srivastava, A.; Prasad, R., (2000). Triglycerides-based diesel fuels. Renew Sust. Energ. Rev., 4(2), 111–133 (23 pages)

    Article  CAS  Google Scholar 

  • Tiwari, A. K.; Kumar, A.; Raheman, H., (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acid: An optimized process. Biomass Bioenerg., 31(8) 569–575 (7 pages)

    Article  Google Scholar 

  • Tomasevic, A. V.; Siler-Marinkove, S. S., (2003). Methanolysis of used frying oil. Fuel Process. Tech., 81(1), 1–6 (6 pages)

    Article  CAS  Google Scholar 

  • Van Der Wat, A. N.; Hugo, F. J. C., (1982). Attempts to prevent injector cooking with sunflower oil by engine modifications and fuel additives. Vegetable Oil fuels, Proceedings of the international conference on plant and vegetable oils as fuels, ASAE, 82(4) 230.

    Google Scholar 

  • Van Gerpen, J., (2005). Biodiesel processing and production. Fuel Proc. Tech., 86(10), 1097–1107 (11 pages).

    Article  Google Scholar 

  • Vicente, G.; Martinez, M.; Aracil, J., (2004). Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresour. Tech., 92(3), 297–305 (9 pages).

    Article  CAS  Google Scholar 

  • Wan Nik, W. B.; Ani, F. N.; Masjuki, H. H., (2005). Thermal stability evaluation of palm oil as energy transport media. Energ. Convers. Manage., 46(13–14), 2198–2215 (18 pages).

    Article  CAS  Google Scholar 

  • Wang, Y.; Ou, S.; Liu, P.; Xue, F.; Tang, S., (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem., 252(1–2), 107–112 (6 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Attia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Diwani, G., Attia, N.K. & Hawash, S.I. Development and evaluation of biodiesel fuel and by-products from jatropha oil. Int. J. Environ. Sci. Technol. 6, 219–224 (2009). https://doi.org/10.1007/BF03327625

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327625

Keywords

Navigation