Skip to main content
Log in

Antimicrobial power of biosynthesized Ag nanoparticles using refined Ginkgo biloba leaf extracts

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag NPs), relative to existing antibacterial agents, are more effective, less toxic and more economical, and have shown enormous potential for the nanomedicine application. In this work, we report a ‘green’ method for the rapid and efficient synthesis of Ag NPs using Ginkgo biloba extracts as reducing agent and capping agent. The properties of Ag NPs against fungi and bacteria were investigated. The results showed that the Ginkgo biloba extracts are crucial for the preparation of uniform and monodispersed Ag NPs. The prepared Ag NPs exhibited remarkable antibacterial activities. The minimum inhibitory concentrations of Ag NPs for Escherichia coli and Pseudomonas aeruginosa were 0.044 and 0.088 µg·mL−1, respectively. Moreover, Ag NPs exhibited excellent bactericidal performance against MDR-Pseudomonas aeruginosa. It was found that the effect of the antibacterial activity of Ag NPs on Escherichia coli and Staphylococcus aureus was tightly related to the reactive oxygen species accumulation. This research provides guidelines for the efficient green synthesis of Ag NPs and its antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crisan C M, Mocan T, Manolea M, et al. Review on silver nanoparticles as a novel class of antibacterial solutions. Applied Sciences - Basel, 2021, 11(3): 1120

    Article  CAS  Google Scholar 

  2. Kunhikannan S, Thomas C J, Franks A E, et al. Environmental hotspots for antibiotic resistance genes. MicrobiologyOpen, 2021, 10(3): e1197

    Article  CAS  Google Scholar 

  3. Lin Z, Yuan T, Zhou L, et al. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environmental Geochemistry and Health, 2021, 43(5): 1741–1758

    Article  CAS  Google Scholar 

  4. Ahmad A, Syed F, Shah A, et al. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Advances, 2015, 5(90): 73793–73806

    Article  CAS  Google Scholar 

  5. Li H Y, Hu D F, Zheng Z M, et al. Primary growth of binary nanoparticle superlattices with distinct systems contingent on synergy: softness and crystalline anisotropy. Applied Nanoscience, 2020, 10(5): 1653–1666

    Article  CAS  Google Scholar 

  6. Wan Y, Goubet N, Albouy P A, et al. Hierarchy in Au nanocrystal ordering in a supracrystal: II. Control of interparticle distances. Langmuir, 2013, 29(44): 13576–13581

    Article  CAS  Google Scholar 

  7. Zhang X D, Ma S, Li A K, et al. Continuous high-flux synthesis of gold nanoparticles with controllable sizes: a simple microfluidic system. Applied Nanoscience, 2020, 10(3): 661–669

    Article  CAS  Google Scholar 

  8. Huo S H, Gao W T, Zhou P X, et al. Magnetic porous carbon composites for rapid and highly efficient degradation of organic pollutants in water. Advanced Powder Materials, 2022, doi:https://doi.org/10.1016/j.apmate.2022.01.001 (in press)

  9. Jiang H S, Zhang Y, Lu Z W, et al. Interaction between silver nanoparticles and two dehydrogenases: role of thiol groups. Small, 2019, 15(27): 1900860

    Article  Google Scholar 

  10. Ben Aissa M A, Tremblay B, Andrieux-Ledier A, et al. Copper nanoparticles of well-controlled size and shape: a new advance in synthesis and self-organization. Nanoscale, 2015, 7(7): 3189–3195

    Article  CAS  Google Scholar 

  11. Makvandi P, Wang C Y, Zare E N, et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Advanced Functional Materials, 2020, 30(22): 1910021

    Article  CAS  Google Scholar 

  12. Lee S H, Jun B H. Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Sciences, 2019, 20(4): 865

    Article  CAS  Google Scholar 

  13. Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 2015, 7(3): 219–242

    Article  CAS  Google Scholar 

  14. Gupta A, Mumtaz S, Li C H, et al. Combatting antibiotic-resistant bacteria using nanomaterials. Chemical Society Reviews, 2019, 48(2): 415–427

    Article  Google Scholar 

  15. Dorobantu L S, Fallone C, Noble A J, et al. Toxicity of silver nanoparticles against bacteria, yeast, and algae. Journal of Nanoparticle Research, 2015, 17(4): 172

    Article  Google Scholar 

  16. Lam S J, Wong E H H, Boyer C, et al. Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 2018, 76: 40–64

    Article  CAS  Google Scholar 

  17. Hu B, Wang N, Han L, et al. Core–shell–shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria. Acta Biomaterialia, 2015, 11: 511–519

    Article  CAS  Google Scholar 

  18. Zhao L, Zhou W, Wen M, et al. Trifunctional Cumesh/Cu2O@FeO-nanoarrays for highly efficient degradation of antibiotic, inactivation of antibiotic-resistant bacteria and damage of antibiotics resistance genes. Energy & Environmental Materials, 2021, doi:https://doi.org/10.1002/eem2.12299 (in press)

  19. Yang P, Portales H, Pileni M P. Ability to discern the splitting between longitudinal and transverse plasmon resonances in Au compared to Ag nanoparticles in close-packed planar arrays. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(20): 205405

    Article  Google Scholar 

  20. Drum D A. Are toxic biometals destroying your children’s future? Biometals, 2009, 22(5): 697–700

    Article  CAS  Google Scholar 

  21. Kim K B, Kim B W, Choo H J, et al. Proteome analysis of adipocyte lipid rafts reveals that gC1qR plays essential roles in adipogenesis and insulin signal transduction. Proteomics, 2009, 9(9): 2373–2382

    Article  CAS  Google Scholar 

  22. Hwang E T, Lee J H, Chae Y J, et al. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small, 2008, 4(6): 746–750

    Article  CAS  Google Scholar 

  23. Ranjan S, Dasgupta N, Chakraborty A R, et al. Nanoscience and nanotechnologies in food industries: opportunities and research trends. Journal of Nanoparticle Research, 2014, 16(6): 2464

    Article  Google Scholar 

  24. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition in English, 2013, 52(6): 1636–1653

    Article  CAS  Google Scholar 

  25. Kilin D S, Prezhdo O V, Xia Y N. Shape-controlled synthesis of silver nanoparticles: ab initio study of preferential surface coordination with citric acid. Chemical Physics Letters, 2008, 458(1–3): 113–116

    Article  CAS  Google Scholar 

  26. Peng H, Yang A, Xiong J. Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydrate Polymers, 2013, 91(1): 348–355

    Article  CAS  Google Scholar 

  27. Chung I M, Park I, Seung-Hyun K, et al. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Research Letters, 2016, 11(1): 40

    Article  Google Scholar 

  28. Shanmuganathan R, MubarakAli D, Prabakar D, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environmental Science and Pollution Research, 2018, 25(11): 10362–10370

    Article  CAS  Google Scholar 

  29. Soshnikova V, Kim Y J, Singh P, et al. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(1): 108–117

    Article  CAS  Google Scholar 

  30. Khoshnamvand M, Huo C, Liu J F. Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. Journal of Molecular Structure, 2019, 1175: 90–96

    Article  CAS  Google Scholar 

  31. Ren Y Y, Yang H, Wang T, et al. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Physics Letters A, 2016, 380(45): 3773–3777

    Article  CAS  Google Scholar 

  32. Kwon S G, Hyeon T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small, 2011, 7(19): 2685–2702

    Article  CAS  Google Scholar 

  33. Zhang J, Huang F, Lin Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2010, 2(1): 18–34

    Article  Google Scholar 

  34. Lin L Z, Harnly J M. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1084–1096

    Article  CAS  Google Scholar 

  35. Singh J, Dutta T, Kim K H, et al. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 2018, 16(1): 84

    Article  CAS  Google Scholar 

  36. Singh A K, Talat M, Singh D P, et al. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. Journal of Nanoparticle Research, 2010, 12(5): 1667–1675

    Article  CAS  Google Scholar 

  37. Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leff. Nanotechnology, 2007, 18(10): 105104

    Article  Google Scholar 

  38. Slavin Y N, Asnis J, Häfeli U O, et al. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology, 2017, 15(1): 65

    Article  Google Scholar 

  39. Chen M, Yang Z, Wu H, et al. Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. International Journal of Nanomedicine, 2011, 6: 2873–2877

    CAS  Google Scholar 

  40. Zulfiqar H, Zafar A, Rasheed M N, et al. Synthesis of silver nanoparticles using Fagonia cretica and their antimicrobial activities. Nanoscale Advances, 2019, 1(5): 1707–1713

    Article  CAS  Google Scholar 

  41. McQuillan J S, Shaw A M. Differential gene regulation in the Ag nanoparticle and Ag+-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology, 2014, 8(Sup1): 177–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial supports by the National Natural Science Foundation of China (Grant Nos. 51871196 and 81960322), the Yunnan Fundamental Research Projects (Grant No. 202001BB050046), the Major Science and Technology Project of Precious Metal Materials Genetic Engineering in Yunnan Province (Grant No. 202002AB080001), the joint fund of Yunnan University and Science & Technology Department of Yunnan Province (Grant No. 2019FY003013), and the Medical Reserve Personnel Training Program of Yunnan Provincial Health Commission (Grant No. H-2018097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Yang, Chao Liu or Yanfen Wan.

Electronic supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, W., Hu, D., Zhang, X. et al. Antimicrobial power of biosynthesized Ag nanoparticles using refined Ginkgo biloba leaf extracts. Front. Mater. Sci. 16, 220594 (2022). https://doi.org/10.1007/s11706-022-0594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0594-8

Keywords

Navigation