Skip to main content
Log in

In vitro corrosion of Mg–Ca alloy — The influence of glucose content

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Influence of glucose on corrosion of biomedical Mg-1.35Ca alloy was made using hydrogen evolution, pH and electrochemical polarization in isotonic saline solution. The corrosion morphologies, compositions and structures were probed by virtue of SEM, EDS, FTIR, XRD and XPS. Results indicate that the glucose accelerated the corrosion of the alloy. The elemental Ca has no visible effect on the corrosion mechanism of glucose for the Mg-1.35Ca alloy in comparison with pure Mg. In addition, the presence of CO2 has beneficial effect against corrosion due to the formation of a layer of carbonatecontaining products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng R C, Qi WC, Cui H Z, et al. In vitro corrosion of as-extruded Mg–Ca alloys — The influence of Ca concentration. Corrosion Science, 2015, 96: 23–31

    Article  Google Scholar 

  2. Cui W, Beniash E, Gawalt E, et al. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomaterialia, 2013, 9(10): 8650–8659

    Article  Google Scholar 

  3. Hort N, Huang Y, Fechner D, et al. Magnesium alloys as implant materials—principles of property design for Mg–RE alloys. Acta Biomaterialia, 2010, 6(5): 1714–1725

    Article  Google Scholar 

  4. Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484–498

    Article  Google Scholar 

  5. Chen Y Q, Zhao S, Chen M Y, et al. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96: 67–73

    Article  Google Scholar 

  6. Zberg B, Uggowitzer P J, Löffler J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891

    Article  Google Scholar 

  7. Peng Q, Guo J, Fu H, et al. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Scientific Reports, 2014, 4(1): 3620

    Article  Google Scholar 

  8. Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3–B14

    Article  Google Scholar 

  9. Ascencio M, Pekguleryuz M, Omanovic S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corrosion Science, 2014, 87: 489–503

    Article  Google Scholar 

  10. Cui L Y, Zeng R C, Guan S K, et al. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg–Ca alloys: The influence of porosity. Journal of Alloys and Compounds, 2017, 695: 2464–2476

    Article  Google Scholar 

  11. Cui L Y, Gao S D, Li P P, et al. Corrosion resistance of a selfhealing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95

    Article  Google Scholar 

  12. Asl S K F, Nemeth S, Tan M J. Hydrothermally deposited protective and bioactive coating for magnesium alloys for implant application. Surface and Coatings Technology, 2014, 258: 931–937

    Article  Google Scholar 

  13. Doepke A, Kuhlmann J, Guo X, et al. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Acta Biomaterialia, 2013, 9(11): 9211–9219

    Article  Google Scholar 

  14. Choudhary L, Singh Raman R K. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomaterialia, 2012, 8(2): 916–923

    Article  Google Scholar 

  15. Zeng R C, Cui L Y, Jiang K, et al. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(Llactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 2016, 8(15): 10014–10028

    Article  Google Scholar 

  16. Mueller W D, Lucia Nascimento M, Lorenzo de Mele M F. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomaterialia, 2010, 6(5): 1749–1755

    Article  Google Scholar 

  17. Xin Y, Hu T, Chu P K. Influence of test solutions on in vitro studies of biomedical magnesium alloys. Journal of the Electrochemical Society, 2010, 157(7): C238

    Article  Google Scholar 

  18. Yang L, Zhang E. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Materials Science and Engineering C, 2009, 29(5): 1691–1696

    Article  Google Scholar 

  19. Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459

    Article  Google Scholar 

  20. Cui L Y, Hu Y, Zeng R C, et al. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science and Technology, 2017, doi: 10.1016/j.jmst.2017.01.005

    Google Scholar 

  21. Zeng R C, Hu Y, Guan S K, et al. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corrosion Science, 2014, 86: 171–182

    Article  Google Scholar 

  22. Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010, 496 (1–2): 500–507

    Article  Google Scholar 

  23. Xin Y, Huo K, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia, 2008, 4(6): 2008–2015

    Article  Google Scholar 

  24. Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2009, 88(2): 359–369

    Article  Google Scholar 

  25. Heakal F E-T, Fekry A M, Fatayerji M Z. Electrochemical behavior of AZ91D magnesium alloy in phosphate medium — part I. Effect of pH. Journal of Applied Electrochemistry, 2009, 39 (5): 583–591

    Article  Google Scholar 

  26. Wang J, Smith C E, Sankar J, et al. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regenerative Biomaterials, 2015, 2(1): 59–69

    Article  Google Scholar 

  27. Shayeb H A E, Sawy E N E. Corrosion behaviour of pure Mg, AS31 and AZ91 in buffered and unbuffered sulphate and chloride solutions. Corrosion Engineering, Science and Technology, 2011, 46(4): 481–492

    Article  Google Scholar 

  28. Yang L J, Wei Y H, Hou L F, et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corrosion Science, 2010, 52(2): 345–351

    Article  Google Scholar 

  29. Kirkland N T, Lespagnol J, Birbilis N, et al. A survey of biocorrosion rates of magnesium alloys. Corrosion Science, 2010, 52 (2): 287–291

    Article  Google Scholar 

  30. Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering C, 2009, 29(5): 1559–1568

    Article  Google Scholar 

  31. Yang L, Hort N, Willumeit R, et al. Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Engineering, Science and Technology, 2012, 47(5): 335–339

    Article  Google Scholar 

  32. Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corrosion Science, 2010, 52(10): 3341–3347

    Article  Google Scholar 

  33. Rettig R, Virtanen S. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2008, 85(1): 167–175

    Article  Google Scholar 

  34. Mueller W D, de Mele M F, Nascimento M L, et al. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. Journal of Biomedical Materials Research Part A, 2009, 90(2): 487–495

    Article  Google Scholar 

  35. Willumeit R, Feyerabend F, Huber N. Magnesium degradation as determined by artificial neural networks. Acta Biomaterialia, 2013, 9(10): 8722–8729

    Article  Google Scholar 

  36. Zeng R C, Li X T, Li S Q, et al. In vitro degradation of pure Mg in response to glucose. Scientific Reports, 2015, 5(1): 13026

    Article  Google Scholar 

  37. Hwang D, Wang H L. Medical contraindications to implant therapy Part II: Relative contraindications. Implant Dentistry, 2007, 16(1): 13–23

    Article  Google Scholar 

  38. Messer R L, Tackas G, Mickalonis J, et al. Corrosion of machined titanium dental implants under inflammatory conditions. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2009, 88(2): 474–481

    Article  Google Scholar 

  39. Kim D J, Xun P, Liu K, et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care, 2010, 33(12): 2604–2610

    Article  Google Scholar 

  40. Chaudhary D P, Sharma R, Bansal D D. Implications of magnesium deficiency in type 2 diabetes: a review. Biological Trace Element Research, 2010, 134(2): 119–129

    Article  Google Scholar 

  41. Yin P, Li N F, Lei T, et al. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1365–1373

    Google Scholar 

  42. Li Y, Hodgson P D, Wen C E. The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. Journal of Materials Science, 2011, 46(2): 365–371

    Article  Google Scholar 

  43. Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701

    Article  Google Scholar 

  44. Cui L Y, Zeng R C, Li S Q, et al. Corrosion resistance of layer-bylayer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6(68): 63107–63116

    Article  Google Scholar 

  45. Cui L Y, Zeng R C, Zhu X X, et al. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10(2): 134–146

    Article  Google Scholar 

  46. Zeng R C, Zhang F, Lan Z D, et al. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88: 452–459

    Article  Google Scholar 

  47. Zhang H, Luo R F, Li W J, et al. Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys. Corrosion Science, 2015, 94: 305–315

    Article  Google Scholar 

  48. Zhang F, Zhang C L, Zeng R C, et al. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg–Al layered double hydroxide coatings on magnesium alloys. Metals, 2016, 6(4): 85

    Article  Google Scholar 

  49. Liu L J, Li P P, Zou Y H, et al. In vitro corrosion and antibacterial performance of polysiloxane and poly(acrylic acid)/gentamicin sulfate composite coatings on AZ31 alloy. Surface and Coatings Technology, 2016, 291: 7–14

    Article  Google Scholar 

  50. Ozturk S, Balkose D, Okur S, et al. Effect of humidity on electrical conductivity of zinc stearate nanofilms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1–3): 67–74

    Article  Google Scholar 

  51. Garai S, Garai S, Jaisankar P, et al. A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution. Corrosion Science, 2012, 60: 193–204

    Article  Google Scholar 

  52. Zeng R C, Liu Z G, Zhang F, et al. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 13049–13057

    Article  Google Scholar 

  53. Zhao L, Liu Q, Gao R, et al. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corrosion Science, 2014, 80: 177–183

    Article  Google Scholar 

  54. Zhou X, Yang H, Wang F. Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution. Corrosion Science, 2012, 54: 193–200

    Article  Google Scholar 

  55. Tong J, Han X, Wang S, et al. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (Solid-State 13C NMR, XPS, FT-IR, and XRD). Energy & Fuels, 2011, 25(9): 4006–4013

    Article  Google Scholar 

  56. Zeng R C, Guo X, Liu C, et al. Study on corrosion of medical Mg–Ca and Mg–Li–Ca alloys. Acta Metallurgica Sinica, 2011, 47(11): 1477–1482 (in Chinese)

    Google Scholar 

  57. Cui Z, Li X, Xiao K, et al. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corrosion Science, 2013, 76: 243–256

    Article  Google Scholar 

  58. Esmaily M, Shahabi-Navid M, Svensson J E, et al. Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50. Corrosion Science, 2015, 90: 420–433

    Article  Google Scholar 

  59. Shahabi-Navid M, Esmaily M, Svensson J E, et al. NaCl-induced atmospheric corrosion of the MgAl alloy AM50 —The influence of CO2. Clinical and Experimental Immunology, 2014, 161(6): C277–C287

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 51571134) and the SDUST Research Fund (No. 2014TDJH104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Chang Zeng or Liang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, LY., Li, XT., Zeng, RC. et al. In vitro corrosion of Mg–Ca alloy — The influence of glucose content. Front. Mater. Sci. 11, 284–295 (2017). https://doi.org/10.1007/s11706-017-0391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-017-0391-y

Keywords

Navigation