Skip to main content
Log in

Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), were first self-assembled on the surface of the AZ31 alloy substrate via electrostatic interactions, designated as (PAH/PSS)5/AZ31. Then, the (PAH/PSS)5/AZ31 samples were dipped into a methyltrimethoxysilane (MTMS) solution to fabricate the PMTMS films, designated as PMTMS/(PAH/PSS)5/AZ31. The surface morphologies, microstructures and chemical compositions of the films were investigated by FE-SEM, FTIR, XRD and XPS. Potentiodynamic polarization, electrochemical impedance spectroscopy and hydrogen evolution measurements demonstrated that the PMTMS/(PAH/PSS)5/AZ31 composite film significantly enhanced the corrosion resistance of the AZ31 alloy in Hank’s balanced salt solution (HBSS). The PAH and PSS films effectively improved the deposition of Ca-P compounds including Ca3(PO4)2 and hydroxyapatite (HA). Moreover, the corrosion mechanism of the composite coating was discussed. These coatings could be an alternative candidate coating for biodegradable Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng Y F, Gu X N, Witte F. Biodegradable metals. Materials Science and Engineering R: Reports, 2014, 77(2): 1–34

    Article  Google Scholar 

  2. Wang J, Smith C E, Sankar J, et al. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regenerative Biomaterials, 2015, 2(1): 59–69

    Article  Google Scholar 

  3. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. International Journal of Molecular Sciences, 2011, 12(7): 4250–4270

    Article  Google Scholar 

  4. Chen Y, Xu Z, Smith C, et al. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 2014, 10(11): 4561–4573

    Article  Google Scholar 

  5. Ishizaki T, Saito N. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability. Langmuir, 2010, 26(12): 9749–9755

    Article  Google Scholar 

  6. Zeng R C, Qi WC, Cui H Z, et al. In vitro corrosion of as-extruded Mg–Ca alloys — The influence of Ca concentration. Corrosion Science, 2015, 96: 23–31

    Article  Google Scholar 

  7. Zhang C Y, Zeng R C, Liu C L, et al. Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank’s solution. Surface and Coatings Technology, 2010, 204(21–22): 3636–3640

    Google Scholar 

  8. Zeng R C, Sun L, Zheng Y F, et al. Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features. Corrosion Science, 2014, 79(79): 69–82

    Article  Google Scholar 

  9. Ishizaki T, Masuda Y, Sakamoto M. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution. Langmuir, 2011, 27(8): 4780–4788

    Article  Google Scholar 

  10. Zeng R C, Zhang F, Lan Z D, et al. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88(6): 452–459

    Article  Google Scholar 

  11. Zeng R C, Lan Z D, Kong L, et al. Characterization of calciummodified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy. Surface and Coatings Technology, 2011, 205(11): 3347–3355

    Article  Google Scholar 

  12. Zeng R C, Liu Z G, Zhang F, et al. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 13049–13057

    Article  Google Scholar 

  13. Zhang F, Liu Z G, Zeng R C, et al. Corrosion resistance of Mg–Al–LDH coating on magnesium alloy AZ31. Surface and Coatings Technology, 2014, 258: 1152–1158

    Article  Google Scholar 

  14. Li M, Cheng Y, Zheng Y F, et al. Plasma enhanced chemical vapor deposited silicon coatings on Mg alloy for biomedical application. Surface and Coatings Technology, 2013, 228(9): S262–S265

    Article  Google Scholar 

  15. Lu Y, Wan P, Tan L, et al. Preliminary study on a bioactive Sr containing Ca–P coating on pure magnesium by a two-step procedure. Surface and Coatings Technology, 2014, 252(9): 79–86

    Article  Google Scholar 

  16. Ishizaki T, Okido M, Masuda Y, et al. Corrosion resistant performances of alkanoic and phosphonic acids derived selfassembled monolayers on magnesium alloy AZ31 by vapor-phase method. Langmuir, 2011, 27(10): 6009–6017

    Article  Google Scholar 

  17. Guan X, Xiong M, Zeng F, et al. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg–Nd–Zn–Zr alloy for mandibular bone repair. ACS Applied Materials & Interfaces, 2014, 6(23): 21525–21533

    Article  Google Scholar 

  18. Zeng R C, QiWC, Song YW, et al. In vitro degradation of MAO/PLA coating on Mg–1.21Li–1.12Ca–1.0Y alloy. Frontiers of Materials Science, 2014, 8(4): 343–353

    Article  Google Scholar 

  19. Sankara Narayanan T S N, Park I S, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Progress in Materials Science, 2014, 60(3): 1–71

    Article  Google Scholar 

  20. Liu P, Pan X, Yang W, et al. Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxidation. Materials Letters, 2012, 75 (1): 118–121

    Article  Google Scholar 

  21. Song L, Song Y, Shan D, et al. Product/metal ratio (PMR): A novel criterion for the evaluation of electrolytes on micro-arc oxidation (MAO) of Mg and its alloys. Science China Technological Sciences, 2011, 54(10): 2795–2801

    Article  Google Scholar 

  22. Mao L, Shen L, Chen J, et al. Enhanced bioactivity of Mg–Nd–Zn–Zr alloy achieved with nanoscale MgF2 surface for vascular stent application. ACS Applied Materials & Interfaces, 2015, 7(9): 5320–5330

    Article  Google Scholar 

  23. Ostrowski N, Lee B, Enick N, et al. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-bylayer coatings on AZ31 magnesium alloys. Acta Biomaterialia, 2013, 9(10): 8704–8713

    Article  Google Scholar 

  24. Kunjukunju S, Roy A, Ramanathan M, et al. A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomaterialia, 2013, 9(10): 8690–8703

    Article  Google Scholar 

  25. Wang B L, Ren K F, Chang H, et al. Construction of degradable multilayer films for enhanced antibacterial properties. ACS Applied Materials & Interfaces, 2013, 5(10): 4136–4143

    Article  Google Scholar 

  26. Liang J, Hu Y,Wu Y, et al. Fabrication and corrosion resistance of superhydrophobic hydroxide zinc carbonate film on aluminum substrates. Journal of Nanomaterials, 2013, (1): 1–6

    Article  Google Scholar 

  27. Liu X, Yue Z, Romeo T, et al. Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomaterialia, 2013, 9 (10): 8671–8677

    Article  Google Scholar 

  28. Zeng R C, Chen J, Kuang J, et al. Influence of silane on corrosion resistance of magnesium alloy AZ31 with thermally sprayed aluminum coatings. Rare Metals, 2010, 29(2): 193–197

    Article  Google Scholar 

  29. Zeng R C, Liu L J, Pang T T, et al. Corrosion resistance of silanemodified hydroxide zinc carbonate film on AZ31 magnesium alloy. Acta Metallurgica Sinica, English Letters, 2015, 28(3): 373–380

    Article  Google Scholar 

  30. Ishizaki T, Sakamoto M. Facile formation of biomimetic colortuned superhydrophobic magnesium alloy with corrosion resistance. Langmuir, 2011, 27(6): 2375–2381

    Article  Google Scholar 

  31. Zeng R C, Sun X X, Song Y W, et al. Influence of solution temperature on corrosion resistance of Zn–Ca phosphate conversion coating on biomedical Mg–Li–Ca alloys. Transactions of Nonferrous Metals Society of China, 2013, 23(11): 3293–3299

    Article  Google Scholar 

  32. Xu R, Sun G, Li Q, et al. A dual-responsive superparamagnetic Fe3O4/Silica/PAH/PSS material used for controlled release of chemotherapeutic agent, keggin polyoxotungstate, PM-19. Solid State Sciences, 2010, 12(10): 1720–1725

    Article  Google Scholar 

  33. Shaikh J S, Pawar R C, Moholkar A V, et al. CuO–PAA hybrid films: Chemical synthesis and supercapacitor behavior. Applied Surface Science, 2011, 257(9): 4389–4397

    Article  Google Scholar 

  34. Sun J, Liu X, Meng L, et al. One-step electrodeposition of selfassembled colloidal particles: a novel strategy for biomedical coating. Langmuir, 2014, 30(37): 11002–11010

    Article  Google Scholar 

  35. Tang Z, Wang Y, Podsiadlo P, et al. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Advanced Materials, 2006, 18(24): 3203–3224

    Article  Google Scholar 

  36. Rusling J F, Hvastkovs E G, Hull D O, et al. Biochemical applications of ultrathin films of enzymes, polyions and DNA. Chemical Communications, 2008, 39(2): 141–154

    Article  Google Scholar 

  37. Sakr O S, Borchard G. Encapsulation of enzymes in Layer-by- Layer (LbL) structures: latest advances and applications. Biomacromolecules, 2013, 14(7): 2117–2135

    Article  Google Scholar 

  38. Sato K, Anzai J. Dendrimers in layer-by-layer assemblies: synthesis and applications. Molecules, 2013, 18(7): 8440–8460

    Article  Google Scholar 

  39. Xu W, Ledin P A, Shevchenko V V, et al. Architecture, assembly, and emerging applications of branched functional polyelectrolytes and poly(ionic liquid)s. ACS Applied Materials & Interfaces, 2015, 7(23): 12570–12596

    Article  Google Scholar 

  40. Jang H, Kim D E, Min D H. Self-assembled monolayer mediated surface environment modification of poly(vinylpyrrolidone)- coated hollow Au–Ag nanoshells for enhanced loading of hydrophobic drug and efficient multimodal therapy. ACS Applied Materials & Interfaces, 2015, 7(23): 12789–12796

    Article  Google Scholar 

  41. Pérez-Anes A, Gargouri M, Laure W, et al. Bioinspired titanium drug eluting platforms based on a poly-β-cyclodextrin-chitosan layer-by-layer self-assembly targeting infections. ACS Applied Materials & Interfaces, 2015, 7(23): 12882–12893

    Article  Google Scholar 

  42. Gentile P, Frongia M E, Cardellach M, et al. Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces. Acta Biomaterialia, 2015, 21: 35–43

    Article  Google Scholar 

  43. Zeng R C, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3–B14

    Google Scholar 

  44. Zomorodian A, Garcia M P, Moura e Silva T, et al. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Acta Biomaterialia, 2013, 9(10): 8660–8670

    Article  Google Scholar 

  45. Cai K, Sui X, Hu Y, et al. Fabrication of anticorrosive multilayer onto magnesium alloy substrates via spin-assisted layer-by-layer technique. Materials Science and Engineering C, 2011, 31(8): 1800–1808

    Article  Google Scholar 

  46. Caruso F, Furlong D N, Ariga K, et al. Characterization of polyelectrolyte-protein multilayer films by atomic force microscopy, scanning electron microscopy, and Fourier transform infrared reflection-absorption spectroscopy. Langmuir, 1998, 14 (16): 4559–4565

    Article  Google Scholar 

  47. Ibarz G, Dähne L, Donath E, et al. Smart micro- and nanocontainers for storage, transport, and release. Advanced Materials, 2001, 13(17): 1324–1327

    Article  Google Scholar 

  48. Mark J E. Some interesting things about polysiloxanes. Accounts of Chemical Research, 2004, 37(12): 946–953

    Article  Google Scholar 

  49. Abe Y, Gunji T. Oligo- and polysiloxanes. Progress in Polymer Science, 2004, 29(3): 149–182

    Article  Google Scholar 

  50. Waizy H, Weizbauer A, Modrejewski C, et al. In vitro corrosion of ZEK100 plates in Hank’s Balanced Salt Solution. Biomedical Engineering Online, 2012, 11(1): 12

    Article  Google Scholar 

  51. Jalota S, Bhaduri S B, Tas A C, et al. Using a synthetic body fluid (SBF) solution of 27 mM HCO3–to make bone substitutes more osteointegrative. Materials Science and Engineering C, 2008, 28 (1): 129–140

    Article  Google Scholar 

  52. Zha J, Lu X, Xin Z. A rational design of double layer mesoporous polysiloxane coatings for broadband antireflection. Journal of Sol- Gel Science and Technology, 2015, 74(3): 677–684

    Article  Google Scholar 

  53. Dai T Y,Wang H J, Cao Y, et al. Preparation, characterization and application of polyaniline/epoxide polysiloxane composite films. Chinese Journal of Polymer Science, 2015, 33(5): 732–742

    Article  Google Scholar 

  54. Hammer P, Schiavetto M G, Dos Santos F C, et al. Improvement of the corrosion resistance of polysiloxane hybrid coatings by cerium doping. Journal of Non-Crystalline Solids, 2010, 356(44–49): 2606–2612

    Article  Google Scholar 

  55. Jamesh M I, Wu G, Zhao Y, et al. Electrochemical corrosion behavior of biodegradable Mg–Y–RE and Mg–Zn–Zr alloys in Ringer’s solution and simulated body fluid. Corrosion Science, 2015, 91: 160–184

    Article  Google Scholar 

  56. Cui X J, Lin X Z, Liu C H, et al. Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy. Corrosion Science, 2015, 90: 402–412

    Article  Google Scholar 

  57. Zoltowski P. On the electrical capacitance of interfaces exhibiting constant phase element behaviour. Journal of Electroanalytical Chemistry, 1998, 443(1): 149–154

    Article  Google Scholar 

  58. Zomorodian A, Garcia M P, Moura e Silva T, et al. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Acta Biomaterialia, 2013, 9(10): 8660–8670

    Article  Google Scholar 

  59. Lim T S, Ryu H S, Hong S H. Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation. Corrosion Science, 2012, 62: 104–111

    Article  Google Scholar 

  60. Arrabal R, Mota J M, Criado A, et al. Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy. Surface and Coatings Technology, 2012, 206(22): 4692–4703

    Article  Google Scholar 

  61. Ander P, Kardan M. Interactions of sodium ions with polyelectrolytes of constant charge density. Macromolecules, 2002, 17 (11): 2436–2441

    Article  Google Scholar 

  62. Zeng R C, Zhang F, Lan Z D, et al. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88(6): 452–459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Chang Zeng or Shuo-Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, LY., Zeng, RC., Zhu, XX. et al. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Front. Mater. Sci. 10, 134–146 (2016). https://doi.org/10.1007/s11706-016-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-016-0332-1

Keywords

Navigation