Skip to main content

Advertisement

Log in

Risk of Malnutrition, Trace Metal, and Vitamin Deficiency Post Roux-en-Y Gastric Bypass—a Prospective Study of 20 Patients with BMI <35 kg/m2

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Due to its reliable effects on type 2 diabetes mellitus (T2DM) remission, Roux-en-Y gastric bypass (RYGB) has recently been investigated as a treatment option for nonseverely obese patients with T2DM (body mass index (BMI) <35 kg/m2). The purpose of this study was to investigate whether RGYB induces malnutrition of macro- and micronutrients within 24 months in these patients.

Methods

A prospective cohort of 20 patients with longstanding, insulin-dependent T2DM and a BMI of 25–35 kg/m2 were treated with RYGB. The patients were supplemented with over-the-counter, multivitamin, and micronutrient supplements. Serum concentrations of albumin, vitamins, and trace elements, hemoglobin, and bone density were measured preoperatively and over a 24-month period (DRKS00004605).

Results

RYGB did not result in underweight or protein malnutrition. No new onset of deficiencies of water- or fat-soluble vitamins developed over the study period. However, serum selenium, zinc, and ferritin decreased significantly (selenium, 1.17 ± 0.13 to 0.89 ± 0.11 μmol/l, p = 0.018; zinc, 13.9 ± 0.5 to 10.8 ± 0.5 μmol/l, p = 0.012; ferritin, 171.7 ± 26.9 to 31.8 ± 11.2 μg/l, p = 0.018). Hemoglobin remained stable. Vitamin D (13.7 ± 1.8 to 19.1 ± 1.1 ng/ml, p = 0.017) and osteocalcin (15.3 ± 1.7 to 25.4 ± 2.7 ng/ml, p = 0.025) rose significantly, whereas the parathyroid hormone remained stable. Despite increased bone formation, bone density decreased (T score hip, 0.15 ± 0.25 to −0.71 ± 0.34, p = 0.005) resulting in a significant increase in osteopenia rates (18 to 50 %, p = 0.046).

Conclusions

This is the first prospective cohort to investigate malnutrition after RYGB in nonseverely obese patients. These patients are at risk of developing iron, selenium, and zinc deficiencies within 24 months, as well as osteopenia despite an increase in bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brethauer SA, Aminian A, Romero-Talamas H, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36. discussion 36–7.

    PubMed Central  PubMed  Google Scholar 

  2. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  CAS  PubMed  Google Scholar 

  3. Cheskin LJ, Kahan S. Review: bariatric surgery increases weight loss and diabetes remission more than nonsurgical treatment. Ann Intern Med. 2014;160(2):JC7.

    Article  PubMed  Google Scholar 

  4. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med 2014 Mar 31

  5. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. Central PMCID: 3372918.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Muller-Stich BP, Fischer L, Kenngott HG, et al. Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization--results of a prospective cohort study (DiaSurg 1 study). Ann Surg. 2013;258(5):760–5. discussion 5–6.

    Article  PubMed  Google Scholar 

  7. Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the diabetes surgery study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wentworth JM, Playfair J, Laurie C, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol 2014 Apr 7

  9. Muller-Stich BP, Senft JD, Warschkow R, et al. Surgical versus medical treatment of type 2 diabetes mellitus in nonseverely obese patients: a systematic review and meta-analysis. Ann Surg 2014 Nov 17

  10. Toh SY, Zarshenas N, Jorgensen J. Prevalence of nutrient deficiencies in bariatric patients. Nutrition. 2009;25(11–12):1150–6.

    Article  CAS  PubMed  Google Scholar 

  11. Shankar P, Boylan M, Sriram K. Micronutrient deficiencies after bariatric surgery. Nutrition. 2010;26(11–12):1031–7.

    Article  CAS  PubMed  Google Scholar 

  12. Aasheim ET, Bjorkman S, Sovik TT, et al. Vitamin status after bariatric surgery: a randomized study of gastric bypass and duodenal switch. Am J Clin Nutr. 2009;90(1):15–22.

    Article  PubMed  Google Scholar 

  13. Gasteyger C, Suter M, Gaillard RC, et al. Nutritional deficiencies after Roux-en-Y gastric bypass for morbid obesity often cannot be prevented by standard multivitamin supplementation. Am J Clin Nutr. 2008;87(5):1128–33.

    CAS  PubMed  Google Scholar 

  14. Herpertz S, Albus C, Lichtblau K, et al. Relationship of weight and eating disorders in type 2 diabetic patients: a multicenter study. Int J Eat Disord. 2000;28(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  15. Mannucci E, Tesi F, Ricca V, et al. Eating behavior in obese patients with and without type 2 diabetes mellitus. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2002;26(6):848–53.

    Article  CAS  Google Scholar 

  16. Lefebvre P, Letois F, Sultan A, et al. Nutrient deficiencies in patients with obesity considering bariatric surgery: a cross-sectional study. Surg Obes Relat Dis Off J Am Soc Bariatric Surg. 2014;10(3):540–6.

    Article  Google Scholar 

  17. Kanis JA, 3rd Melton LJ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res. 1994;9(8):1137–41.

    Article  CAS  Google Scholar 

  18. Malone M, Alger-Mayer S, Lindstrom J, et al. Management of iron deficiency and anemia after Roux-en-Y gastric bypass surgery: an observational study. Surg Obes Relat Dis Off J Am Soc Bariatric Surg. 2013;9(6):969–74.

    Article  Google Scholar 

  19. Alexandrou A, Armeni E, Kouskouni E, et al. Lambrinoudaki I. Cross-sectional long-term micronutrient deficiencies after sleeve gastrectomy versus Roux-en-Y gastric bypass: a pilot study. Surg Obes Relat Dis Off J Am Soc Bariatric Surg. 2014;10(2):262–8.

    Article  Google Scholar 

  20. Gesquiere I, Lannoo M, Augustijns P, et al. Iron deficiency after Roux-en-Y gastric bypass: insufficient iron absorption from oral iron supplements. Obes Surg. 2014;24(1):56–61.

    Article  PubMed  Google Scholar 

  21. Gehrer S, Kern B, Peters T, et al. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic roux-Y-gastric bypass (LRYGB)-a prospective study. Obes Surg. 2010;20(4):447–53.

    Article  PubMed  Google Scholar 

  22. Ernst B, Thurnheer M, Schmid SM, et al. Evidence for the necessity to systematically assess micronutrient status prior to bariatric surgery. Obes Surg. 2009;19(1):66–73.

    Article  PubMed  Google Scholar 

  23. Freeth A, Prajuabpansri P, Victory JM, et al. Assessment of selenium in Roux-en-Y gastric bypass and gastric banding surgery. Obes Surg. 2012;22(11):1660–5.

    Article  PubMed  Google Scholar 

  24. Ruz M, Carrasco F, Rojas P, et al. Zinc absorption and zinc status are reduced after Roux-en-Y gastric bypass: a randomized study using 2 supplements. Am J Clin Nutr. 2011;94(4):1004–11.

    Article  CAS  PubMed  Google Scholar 

  25. Salle A, Demarsy D, Poirier AL, et al. Zinc deficiency: a frequent and underestimated complication after bariatric surgery. Obes Surg. 2010;20(12):1660–70.

    Article  PubMed  Google Scholar 

  26. Daniels LA. Selenium metabolism and bioavailability. Biol Trace Elem Res. 1996;54(3):185–99.

    Article  CAS  PubMed  Google Scholar 

  27. Ip C. Interaction of vitamin C and selenium supplementation in the modification of mammary carcinogenesis in rats. J Natl Cancer Inst. 1986;77(1):299–303.

    CAS  PubMed  Google Scholar 

  28. Lee HH, Prasad AS, Brewer GJ, et al. Zinc absorption in human small intestine. Am J Physiol. 1989;256(1 Pt 1):G87–91.

    CAS  PubMed  Google Scholar 

  29. Takiishi T, Ding L, Baeke F, et al. Dietary supplementation with high doses of regular vitamin D3 safely reduces diabetes incidence in nod mice when given early and long-term. Diabetes 2014 Feb 18

  30. Van Belle TL, Gysemans C, Mathieu C. Vitamin D and diabetes: the odd couple. Trends Endocrinol Metab: TEM. 2013;24(11):561–8.

    Article  PubMed  Google Scholar 

  31. Takiishi T, Gysemans C, Bouillon R, et al. Vitamin D and diabetes. Endocrinol Metab Clin N Am. 2010;39(2):419–46. table of contents.

    Article  CAS  Google Scholar 

  32. George PS, Pearson ER, Witham MD. Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and meta-analysis. Diabet Med J Br Diabetic Assoc. 2012;29(8):e142–50.

    Article  CAS  Google Scholar 

  33. Kramer CK, Swaminathan B, Hanley AJ, et al. Prospective associations of vitamin D status with beta-cell function, insulin sensitivity and glycemia: the impact of parathyroid hormone status. Diabetes 2014 May 29

  34. Nwosu BU, Maranda L. The effects of vitamin d supplementation on hepatic dysfunction, vitamin d status, and glycemic control in children and adolescents with vitamin d deficiency and either type 1 or type 2 diabetes mellitus. PLoS One. 2014;9(6):e99646. PMCID: 4053366.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Oosterwerff MM, Eekhoff EM, Van Schoor NM, et al. Effect of moderate-dose vitamin D supplementation on insulin sensitivity in vitamin D-deficient non-Western immigrants in the Netherlands: a randomized placebo-controlled trial. Am J Clin Nutr. 2014;100(1):152–60.

    Article  CAS  PubMed  Google Scholar 

  36. Yu EW, Bouxsein ML, Roy AE, et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29(3):542–50. PMCID: 3918250.

    Article  CAS  Google Scholar 

  37. Nakamura KM, Haglind EG, Clowes JA, et al. Fracture risk following bariatric surgery: a population-based study. Osteoporos. Int.J Established Result Cooperation Euro Found Osteoporos. Natl Osteoporos Found USA 2013 Aug 3

  38. Lalmohamed A, de Vries F, Bazelier MT, et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ. 2012;345:e5085. PMCID: 3413006.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Kenngott HG, Clemens G, Gondan M, et al. DiaSurg 2 trial - surgical vs. medical treatment of insulin-dependent type 2 diabetes mellitus in patients with a body mass index between 26 and 35 kg/m2: study protocol of a randomized controlled multicenter trial - DRKS00004550. Trials. 2013;14(1):183. PMCID: 3694456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

There was no financial support for this study. We would like to thank Elizabeth Corrao for editing this manuscript for appropriate English.

Conflict of Interest

The authors declare that they have no conflict of interest. This study was supported by the German Research Society (DFG) awarded to Prof. P. Nawroth (SFB 1118).

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat P. Müller-Stich.

Additional information

Adrian T. Billeter and Pascal Probst contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billeter, A.T., Probst, P., Fischer, L. et al. Risk of Malnutrition, Trace Metal, and Vitamin Deficiency Post Roux-en-Y Gastric Bypass—a Prospective Study of 20 Patients with BMI <35 kg/m2 . OBES SURG 25, 2125–2134 (2015). https://doi.org/10.1007/s11695-015-1676-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-015-1676-9

Keywords

Navigation