Skip to main content

Advertisement

Log in

Metabolic Surgery for the Treatment of Type 2 Diabetes in Patients with BMI <35 kg/m2: An Integrative Review of Early Studies

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) resolution in morbidly obese patients following metabolic surgery suggests the efficacy of T2DM surgery in non-morbidly obese patients (body mass index [BMI] <35 kg/m2). This literature review examined research articles in English over the last 30 years (1979–2009) that addressed surgical resolution of T2DM in patients with a mean BMI <35. Weighted and simple means (95% CI) were calculated to analyze study outcomes. Sixteen studies met inclusion criteria; 343 patients underwent one of eight procedures with 6–216 months follow-up. Patients lost a clinically meaningful, not excessive, amount of weight (from BMI 29.4 to 24.2; −5.1), moving from the overweight into the normal weight category. There were 85.3% patients who were off T2DM medications with fasting plasma glucose approaching normal (105.2 mg/dL, −93.3), and normal glycated hemoglobin, 6% (−2.7). In subgroup comparison, BMI reduction and T2DM resolution were greatest following malabsorptive/restrictive procedures, and in the preoperatively mildly obese (30.0–35.0) vs overweight (25.0–25.9) BMI ranges. Complications were few with low operative mortality (0.29%). Novel and/or known mechanisms of T2DM resolution may be engaged by surgery at a BMI threshold ≤30. The majority of low-BMI patients experienced resolution of laboratory and clinical manifestations of T2DM without inappropriate weight loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. North American Association for the Study of Obesity (NAASO) and the National Heart, Lung, and Blood Institute (NHLBI). The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. NIH Publication #00-4084, October 2000.

  2. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.

    Article  PubMed  CAS  Google Scholar 

  3. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  PubMed  CAS  Google Scholar 

  4. Christou NV, Sampalis JS, Liberman M, et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg. 2004;240:416–23.

    Article  PubMed  Google Scholar 

  5. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56.e5. Review.

    Article  PubMed  Google Scholar 

  6. Pontiroli AE, Folli F, Paganelli M, et al. Laparoscopic gastric banding prevents type 2 diabetes and arterial hypertension and induces their remission in morbid obesity: a 4-year case-controlled study. Diabetes Care. 2005;28(11):2703–9.

    Article  PubMed  Google Scholar 

  7. Von Mering JV, Minkowski O. Diabetes nach pankreas extirpation. Arch Exp Path Pharmakol. 1889;26:371.

    Google Scholar 

  8. Barron M. The relation of the islets of langerhans to diabetes with special reference to cases of pancreatic lithiasis. Surg, Gynecol and Obstetrics. 1920;31(5):437–48.

    Google Scholar 

  9. Banting FG, Best CH, Collip JB, et al. Pancreatic extracts in the treatment of diabetes mellitus: preliminary report. CMAJ. 1922;12(3):141–6.

    CAS  Google Scholar 

  10. Friedman MN, Sancetta AJ, Magovern GJ. The amelioration of diabetes mellitus following subtotal gastrectomy. Surg Gynecol Obstet. 1955;100(2):201–4.

    PubMed  CAS  Google Scholar 

  11. Bosello O, Armellini F, Pelloso M, et al. Glucose tolerance in jejunoileal bypass for morbid obesity: a fifteen month follow-up. Diabetes Metab. 1978;4(3):159–62.

    CAS  Google Scholar 

  12. Ackerman NB. Observations on the improvements in carbohydrate metabolism in diabetic and other morbidly obese patients after jejunoileal bypass. Surg Gynecol Obstet. 1981;152(5):581–6.

    PubMed  CAS  Google Scholar 

  13. Halverson JD, Kramer J, Cave A, et al. Altered glucose tolerance, insulin response, and insulin sensitivity after massive weight reduction subsequent to gastric bypass. Surgery. 1982;92(2):235–40.

    PubMed  CAS  Google Scholar 

  14. Herbst CA, Hughes TA, Gwynne JT, et al. Gastric bariatric operation in insulin-treated adults. Surgery. 1984;95:209–13.

    PubMed  CAS  Google Scholar 

  15. Schrumpf E, Bergan A, Djoseland O, et al. The effect of gastric bypass operation on glucose tolerance in obesity. Scand J Gastroenterol. 1985;20 Suppl 107:24–31.

    Article  Google Scholar 

  16. Scopinaro N, Gianetta E, Civalleri D, et al. Biliopancreatic bypass for obesity: I. An experimental study in dogs. Br J Surg. 1979;66:613–7.

    Article  PubMed  CAS  Google Scholar 

  17. Scopinaro N, Gianetta E, Civalleri D, et al. Biliopancreatic bypass for obesity: II. Initial experience in man. Br J Surg. 1979;66:618–20.

    Article  PubMed  CAS  Google Scholar 

  18. Scopinaro N, Gianetta E, Friedman D, et al. Evolution of biliopancreatic bypass. Clin Nutr. 1986;5(Suppl):137–46.

    Google Scholar 

  19. Pories WJ, Caro JF, Flickinger EG, et al. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville Gastric Bypass. Ann Surg. 1987;206(3):316–23.

    Article  PubMed  CAS  Google Scholar 

  20. Jimenez J, Zuniga-Guajardo S, Zinman B, et al. Effects of weight loss in massive obesity on insulin and C-peptide dynamics: sequential changes in insulin production, clearance, and sensitivity. J Clin Endocrinol Metab. 1987;64(4):661–8.

    Article  PubMed  CAS  Google Scholar 

  21. Pories WJ, MacDonald Jr KG, Flickinger EG, et al. Is type II diabetes mellitus (NIDDM) a surgical disease? Ann Surg. 1992;215(6):633–42. discussion 643.

    Article  PubMed  CAS  Google Scholar 

  22. Pories WJ, Swanson MS, MacDonald KG, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–52.

    Article  PubMed  CAS  Google Scholar 

  23. Maggard M, Shugarman LR, Suttorp M, et al. Meta-analysis: surgical treatment of obesity. Ann Intern Med. 2005;142(7):547–59.

    PubMed  Google Scholar 

  24. Sjöström CD, Lissner L, Wedel H, et al. Reduction in incidence of diabetes, hypertension and lipid disturbances after intentional weight loss induced by bariatric surgery: the SOS Intervention Study. Obes Res. 1999;7(5):477–84.

    PubMed  Google Scholar 

  25. Sugerman HJ, Wolfe LG, Sica DA, et al. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg. 2003;237(6):751–6. discussion 757–8.

    Article  PubMed  Google Scholar 

  26. Dixon JB, Dixon ME, O’Brien PE. Quality of life after Lap-Band placement: influence of time, weight loss, and comorbidities. Obes Res. 2001;9(11):713–21.

    Article  PubMed  CAS  Google Scholar 

  27. Sjöström L, Narbro K, Sjöström CD. Effects of bariatric surgery on mortality in Swedish obese subjects. NEJM. 2007;357(8):741–52.

    Article  PubMed  Google Scholar 

  28. Flum DR, Dellinger EP. Impact of gastric bypass operation on survival: a population-based analysis. J Am Coll Surg. 2004;199:543–51.

    Article  PubMed  Google Scholar 

  29. Lara MD, Kothari SN, Sugerman HJ. Surgical management of obesity: a review of the evidence relating to the health benefits and risks. Treat Endocrinol. 2005;4(1):55–64. Review.

    Article  PubMed  Google Scholar 

  30. Buchwald H, Estok R, Fahrbach K, et al. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery. 2007;142:621–35.

    Article  PubMed  Google Scholar 

  31. Sampalis JS, Liberman M, Auger S, et al. The impact of weight reduction surgery on health-care costs in morbidly obese patients. Obesity Surg. 2004;14(7):939–47.

    Article  Google Scholar 

  32. Finkelstein EA, Brown DS. Return on investment for bariatric surgery. Am J Managed Care. 2008;14(9):561–2.

    Google Scholar 

  33. Cremieux PY, Buchwald H, Shikora SA, et al. A study on the economic impact of bariatric surgery. Am J Manag Care. 2008;14(9):589–96.

    PubMed  Google Scholar 

  34. Scopinaro N, Adami GF, Marinari GM, et al. Biliopancreatic diversion. World J Surg. 1998;22:936–46.

    Article  PubMed  CAS  Google Scholar 

  35. Hickey MS, Pories WJ, MacDonald Jr KG, et al. A new paradigm for type 2 diabetes mellitus: could it be a disease of the foregut? Ann Surg. 1998;227:637–43.

    Article  PubMed  CAS  Google Scholar 

  36. Gumbs A, Modlin IM, Ballantyne GH. Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes Surg. 2005;15:462–73.

    Article  PubMed  Google Scholar 

  37. Brolin RE. Update: NIH consensus conference. Gastrointestinal surgery for severe obesity. Nutrition. 1996;12:403–4.

    Article  PubMed  CAS  Google Scholar 

  38. Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg. 2002;236:554–9.

    Article  PubMed  Google Scholar 

  39. Levy P, Fried M, Santini F, et al. The comparative effects of bariatric surgery on weight and type 2 diabetes. Obes Surg. 2007;17(9):1248–56. Review.

    Article  PubMed  Google Scholar 

  40. Schauer PR, Ikramuddin S, Gourash W, et al. Outcomes after laparoscopic roux-en-Y gastric bypass for morbid obesity. Ann Surg. 2000;232:515–29.

    Article  PubMed  CAS  Google Scholar 

  41. Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surgery. 1996;119(3):261–8.

    Article  PubMed  CAS  Google Scholar 

  42. Buchwald H, Buchwald JN. Evolution of surgery for morbid obesity. In: Pitombo C, Jones KB, Higa KD, Pareja JC, editors. Obesity Surgery: Principles and Practice. New York: McGraw-Hill Medical; 2007. p. 3–14.

    Google Scholar 

  43. Pories WJ. Why does the gastric bypass control type 2 diabetes mellitus? Obes Surg. 1992;2:303–13.

    Article  PubMed  Google Scholar 

  44. Cowan GS, Buffington CK. Significant changes in blood pressure, glucose, and lipids with gastric bypass surgery. World J Surg. 1998;22:987–92.

    Article  PubMed  Google Scholar 

  45. Segal JB, Clark JM, Shore AD. Prompt reduction in use of medications for comorbid conditions after bariatric surgery. Obes Surg. 2009;19:1646–56.

    Article  PubMed  Google Scholar 

  46. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89:2608–15.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrannini E, Mingrone G. Impact of different bariatric surgical procedures on insulin action and beta-cell function in type 2 diabetes. Diabetes Care. 2009;32:514–20.

    Article  PubMed  Google Scholar 

  48. Vencio S, De Paula A, Macedo A, et al. Effect of laparoscopic ileal interposition on beta cell function and insulin sensitivity in nonobese patients with type 2 diabetes mellitus. Diabetologia. 2009;52 Suppl 1:S44.

    Google Scholar 

  49. Mingrone G. Role of the incretin system in the remission of type 2 diabetes following bariatric surgery. Nutr Metab Cardiovasc Dis. 2008;18:574–9.

    Article  PubMed  CAS  Google Scholar 

  50. Polyzogopoulou EV, Kalfarentzos F, Vagenakis AG, et al. Restoration of euglycemia and normal acute insulin response to glucose in obese subjects with type 2 diabetes following bariatric surgery. Diabetes. 2003;52:1098–103.

    Article  PubMed  CAS  Google Scholar 

  51. Laferrère B, Teixeira J, McGinty J, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:2479–85.

    Article  PubMed  CAS  Google Scholar 

  52. Salinari S, Bertuzzi A, Iaconelli A, et al. Twenty-four hour insulin secretion and beta cell NEFA oxidation in type 2 diabetic, morbidly obese patients before and after bariatric surgery. Diabetologia. 2008;51:1276–84.

    Article  PubMed  CAS  Google Scholar 

  53. le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243(1):108–14.

    Article  PubMed  Google Scholar 

  54. Buchwald H, Varco RL. Metabolic surgery. New York, NY: Grune & Stratton; 1978.

    Google Scholar 

  55. Pories W. So you think we are bariatric surgeons? Think again. Obes Surg. 2003;13(5):673–5.

    Article  PubMed  Google Scholar 

  56. Buchwald H. Lowering of cholesterol absorption and blood levels by ileal exclusion: experimental basis and preliminary clinical report. Circulation. 1964;29:713–20.

    PubMed  CAS  Google Scholar 

  57. Koopmans HS, Sclafani A. Control of body weight by lower gut signals. Int J Obes. 1981;5:491–5.

    PubMed  CAS  Google Scholar 

  58. Mistry SB, Omana JJ, Kini S. Rat models for bariatric surgery and surgery for type 2 diabetes mellitus. Obes Surg. 2009;19:655–60. Review.

    Article  PubMed  Google Scholar 

  59. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11.

    Article  PubMed  Google Scholar 

  60. Rubino F, Zizzari P, Tomasetto C, et al. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology. 2005;146(4):1745–51.

    Article  PubMed  CAS  Google Scholar 

  61. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    Article  PubMed  Google Scholar 

  62. Patriti A, Facchiano E, Annetti C, et al. Early improvement of glucose tolerance after ileal transpositition in a non-obese type 2 diabetes rat model. Obes Surg. 2005;15:1258–64.

    Article  PubMed  Google Scholar 

  63. Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-Kakazaki rats through an enhanced proglucagon gene expression and L-cell number. Surgery. 2007;142:74–85.

    Article  PubMed  Google Scholar 

  64. Pacheco D, de Luis DA, Romero A, et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats. Am J Surg. 2007;194(2):221–4.

    Article  PubMed  CAS  Google Scholar 

  65. Wang TT, Hu SY, Gao HD, et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann Surg. 2008;247(6):968–75.

    Article  PubMed  Google Scholar 

  66. Strader A, Clausen TR, Goodin SZ, et al. Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats. Obes Surg. 2009;19:96–104.

    Article  PubMed  Google Scholar 

  67. National Diabetes Information Clearinghouse. Diagnosis of Diabetes. USDHHS. NIH Publication No. 09–4642; October 2008.

  68. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32(1):S62–6.

    Article  Google Scholar 

  69. HOMA Calculator, v2.2.2, released 12 Dec 2007. Diabetes Trials Unit. The Oxford Centre for Diabetes, Endocrinology and Metabolism. Available at: http://www.dtu.ox.ac.uk/index.php?maindoc=/homa/index.php.

  70. Rowlett R and the University of North Carolina at Chapel Hill. Dictionary of Units of Measure. SI units for clinical data. Available at: http://www.unc.edu/∼rowlett/units/scales/clinical_data.html.

  71. Angrisani L, Favretti F, Furbetta F, et al. Italian Group for Lap-Band System®: results of multicenter study on patients with BMI ≤35 kg/m2. Obes Surg. 2004;14:415–8.

    Article  PubMed  CAS  Google Scholar 

  72. Parikh M, Duncombe J, Fielding GA. Laparoscopic adjustable gastric banding for patients with body mass index of 35 kg/m2. Surg Obes Rel Dis. 2006;2:518–22.

    Article  CAS  Google Scholar 

  73. Sultan S, Parikh M, Youn H, et al. Early U.S. outcomes after laparoscopic adjustable gastric banding in patients with a body mass index less than 35 kg/m2. Surg Endosc. 2009;23:1569–73.

    Article  PubMed  Google Scholar 

  74. Cohen R, Pinheiro JS, Correa JL, et al. Laparoscopic Roux-en-Y gastric bypass for BMI <35 kg/m2: a tailored approach. Surg Obes Relat Dis. 2006;2:401–4.

    Article  PubMed  Google Scholar 

  75. Lee WJ, Wang W, Lee YC, et al. Effect of laparoscopic mini-gastric bypass for type 2 diabetes mellitus: comparison of BMI >35 and <35 kg/m2. J Gastrointest Surg. 2008;12:945–52.

    Article  PubMed  Google Scholar 

  76. DePaula AL, Macedo ALV, Mota BR, et al. Laparoscopic ileal interposition associated to a diverted sleeve gastrectomy is an effective operation for the treatment of type 2 diabetes mellitus patients with BMI 21–29. Surg Endosc. 2009;23:1313–20.

    Article  PubMed  CAS  Google Scholar 

  77. DePaula AL, Macedo ALV, Schraibman V, et al. Hormonal evaluation following laparoscopic treatment of type 2 diabetes mellitus patients with BMI 20–34. Surg Endosc. 2009;23:1724–32.

    Article  PubMed  Google Scholar 

  78. Shah S, Todkar JS, Shah PS, et al. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index <35 kg/m2. Surg Obes Rel Dis. 2009. doi:10.1016/j.soard.2009.08.009.

  79. Noya G, Cossu ML, Coppola M, et al. Biliopancreatic diversion preserving the stomach and pylorus in the treatment of hypercholesterolemia and diabetes type II: results in the first 10 cases. Obes Surg. 1998;8:67–72.

    Article  PubMed  CAS  Google Scholar 

  80. Cohen RV, Schiavon CA, Pinheiro JS, et al. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with BMI 22–34: a report of two cases. Surg Obes Relat Dis. 2007;3(2):195–7.

    Article  PubMed  Google Scholar 

  81. Scopinaro N, Papadia F, Marinari G, et al. Long-term control of type 2 diabetes mellitus and the other major components of the metabolic syndrome after biliopancreatic diversion in patients with BMI <35 kg/m2. Obes Surg. 2007;17:185–92.

    Article  PubMed  Google Scholar 

  82. Ramos AC, Galvao Neto MP, de Souza YM, et al. Laparoscopic duodenaljejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI <30 kg/m2. Obes Surg. 2009;19:307–12.

    Article  PubMed  Google Scholar 

  83. Geloneze B, Geloneze S, Fiori C, et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal–jejunal exclusion. Obes Surg. 2009;19:1077–83.

    Article  PubMed  Google Scholar 

  84. Ferzli GS, Dominique E, Ciaglia M, et al. Clinical improvement after duodenojejunal bypass for nonobese type 2 diabetes despite minimal improvement in glycemic homeostasis. World J Surg. 2009;33:972–9.

    Article  PubMed  CAS  Google Scholar 

  85. Chiellini C, Rubino F, Castagneto M, et al. The effect of bilio-pancreatic diversion on type 2 diabetes in patients with BMI <35 kg/m2. Diabetologia. 2000;52:1027–30.

    Article  CAS  Google Scholar 

  86. Scopinaro N, Adami GF, Papadia FS, et al. Effects of biliopancreatic diversion on type 2 diabetes in patients with BMI 25 to 35 kg/m2. J Clin Endocrinol Metab 2009; submitted.

  87. Fobi M, Lee H, Igwe D, et al. Gastric bypass in patients with BMI <40 but >32 without life-threatening co-morbidities: preliminary report. Obes Surg. 2002;12:52–6.

    Article  PubMed  Google Scholar 

  88. O’Brien PE, Dixon JB, Laurie C, et al. Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program. Ann Intern Med. 2006;144(9):625–33.

    PubMed  Google Scholar 

  89. Dixon JB, O'Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  PubMed  CAS  Google Scholar 

  90. Dimick JB, Welch HG, Birkmeyer JD. Surgical mortality as an indicator of hospital quality. JAMA. 2004;292:847–51.

    Article  PubMed  CAS  Google Scholar 

  91. Kolterman OG, Gray RS, Griffin J, et al. Receptor and post-receptor defect tribute to the insulin resistance in non-insulin dependent diabetes mellitus. J Clin Invest. 1981;68:957–69.

    Article  PubMed  CAS  Google Scholar 

  92. Elton CW, Tapscott EB, Pories WJ, et al. Effect of moderate obesity on glucose transport in human muscle. Horm Metab Res. 1994;26:181–3.

    Article  PubMed  CAS  Google Scholar 

  93. Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en-Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84.

    PubMed  Google Scholar 

  94. Ponce J, Haynes B, Paynter S, et al. Effect of Lap-Band-induced weight loss on type 2 diabetes mellitus and hypertension. Obes Surg. 2004;14(10):1335–42.

    Article  PubMed  Google Scholar 

  95. Herron D, Tong W. Role of surgery in management of type II diabetes. Mount Sinai Med J. 2009;76:281–93.

    Article  Google Scholar 

  96. Dixon J. Obesity and diabetes: the impact of bariatric surgery on type-2 diabetes. World J Surg. 2009;33(10):2014–21.

    Article  PubMed  Google Scholar 

  97. Cummings D, Overduin J, Foster-Schubert KE, et al. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis. 2007;3(2):109–15.

    Article  PubMed  Google Scholar 

  98. Zimmet P, Turner R, McCarty D, et al. Crucial points at diagnosis. Type 2 diabetes or slow type 1 diabetes. Diabetes Care. 1999;22 Suppl 2:B59–64.

    PubMed  Google Scholar 

  99. Deitel M. Surgery for diabetes at lower BMI: some caution. Obes Surg. 2008;18:1211–4.

    Article  PubMed  Google Scholar 

  100. Himsworth HP. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. Lancet. 1936;i:127–30.

    Article  Google Scholar 

  101. National Institutes of Health Consensus Development Panel. Gastrointestinal surgery for severe obesity. Ann Intern Med. 1991;115:956–61.

    Google Scholar 

  102. IFSO Editorial. Statement on patient selection for bariatric surgery. Obes Surg. 1997;7(1):41.

    Article  Google Scholar 

  103. Misra A, Chowbey P, Makkar BM, et al. Consensus statement for diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management. J Assoc Physicians of India. 2009;57:163–70.

    CAS  Google Scholar 

  104. Razak F, Anand SS, Shannon H, et al. Defining obesity cut points in a multiethnic population. Circulation. 2007;115:2111–8.

    Article  PubMed  Google Scholar 

  105. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002;162:2074–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank T. McGlennon of M3, LLC, WI, USA for statistical consultation during manuscript development.

Disclosures

This work was supported by Ethicon Endo-Surgery (Europe) GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, M., Ribaric, G., Buchwald, J.N. et al. Metabolic Surgery for the Treatment of Type 2 Diabetes in Patients with BMI <35 kg/m2: An Integrative Review of Early Studies. OBES SURG 20, 776–790 (2010). https://doi.org/10.1007/s11695-010-0113-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-010-0113-3

Keywords

Navigation