Skip to main content
Log in

Detection of sodium hydrosulfite adulteration in wheat flour by FT-MIR spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Bread is a major source of human’s diet especially in developing countries and has significant role in human's healthy lifestyle. The addition of sodium dithionite (Na2S2O4) to flour for whitening has dangerous effects on human's health. In this research Fourier Transform-Infrared (FT-IR) spectroscopy with chemometric techniques is used to identify this compound in flour. After acquiring spectral data some preprocessing methods for removing uninformative effects and improving model results were applied. Principle Component Analysis (PCA) as unsupervised and Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) as supervised models were used. By comparing different preprocessing methods with models, The SVM model had the best classification result with 100% and 79.62% for two (pure and adulterated) and five (pure and adulterated with adulteration levels) class classification, respectively. This study showed the applicability of FT-MIR spectroscopy technology with chemometrics methods for detection of fraud in wheat flour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.L. Adams, E. Lombi, F.J. Zhao, S.P. McGrath, Evidence of low selenium concentrations in UK bread-making wheat grain. J. Sci. Food Agric. 82(10), 1160–1165 (2002). https://doi.org/10.1002/jsfa.1167

    Article  CAS  Google Scholar 

  2. P.R. Shewry, The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health. Nutr. Bull. 34(2), 225–231 (2009). https://doi.org/10.1111/j.1467-3010.2009.01747.x

    Article  Google Scholar 

  3. P.R. Shewry, S. Powers, J.M. Field, R.J. Fido, H.D. Jones, G.M. Arnold et al., Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theor. Appl. Genet. 113(1), 128–136 (2006). https://doi.org/10.1007/s00122-006-0279-1

    Article  CAS  PubMed  Google Scholar 

  4. D. Topping, Cereal complex carbohydrates and their contribution to human health. J. Cereal Sci. 46(3), 220–229 (2007)

    Article  CAS  Google Scholar 

  5. M. Malakootian, S. Dowlatshahi, The quality of the manufactured bread and hygienic conditions of bakeries. J. Environ. Health Sci. Eng. 2(2), 72–78 (2005)

    Google Scholar 

  6. M. Sabeghi, Interview with dean of faculity of flour and bread. J. Iran Dough-Baked 3, 5–6 (2004)

    Google Scholar 

  7. J.B. Weinrach, D.R. Meyer, J.T. Guy, P.E. Michalski, K.L. Carter, D.S. Grubisha, D.W. Bennett, A structural study of sodium dithionite and its ephemeral dihydrate: a new conformation for the dithionite ion. J. Crystallogr. Spectrosc. Res. 22(3), 291–301 (1992)

    Article  CAS  Google Scholar 

  8. J. Chitra, M. Ghosh, H. Mishra, Rapid quantification of cholesterol in dairy powders using Fourier transform near infrared spectroscopy and chemometrics. Food Control 78, 342–349 (2017)

    Article  CAS  Google Scholar 

  9. B. Gaspardo, S. Del Zotto, E. Torelli, S. Cividino, G. Firrao, G. Della Riccia, B. Stefanon, A rapid method for detection of fumonisins B1 and B2 in corn meal using Fourier transform near infrared (FT-NIR) spectroscopy implemented with integrating sphere. Food Chem. 135(3), 1608–1612 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. T. Leng, F. Li, L. Xiong, Q. Xiong, M. Zhu, Y. Chen, Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control 113, 107203 (2020)

    Article  CAS  Google Scholar 

  11. J.A.L. Pallone, E.T. dos Santos Caramês, P.D. Alamar, Green analytical chemistry applied in food analysis: alternative techniques. Curr. Opin. Food Sci. 22, 115–121 (2018)

    Article  Google Scholar 

  12. S. Lohumi, S. Lee, H. Lee, B.-K. Cho, A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 46(1), 85–98 (2015)

    Article  CAS  Google Scholar 

  13. A. De Girolamo, M.C. Arroyo, S. Cervellieri, M. Cortese, M. Pascale, A.F. Logrieco, V. Lippolis, Detection of durum wheat pasta adulteration with common wheat by infrared spectroscopy and chemometrics: a case study. LWT 127, 109368 (2020)

    Article  Google Scholar 

  14. A. De Girolamo, S. Cervellieri, E. Mancini, M. Pascale, A.F. Logrieco, V. Lippolis, Rapid authentication of 100% Italian durum wheat pasta by FT-NIR spectroscopy combined with chemometric tools. Foods 9(11), 1551 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  15. X.X. Guo, W. Hu, Y. Liu, D.C. Gu, S.Q. Sun, C.H. Xu, X.C. Wang, Rapid analysis and quantification of fluorescent brighteners in wheat flour by Tri-step infrared spectroscopy and computer vision technology. J. Mol. Struct. 1099, 393–398 (2015)

    Article  CAS  Google Scholar 

  16. S.D. Rodríguez, G. Rolandelli, M.P. Buera, Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chem. 274, 392–401 (2019)

    Article  PubMed  Google Scholar 

  17. W. Yuan, B. Xiang, L. Yu, J. Xu, A non-invasive method for screening sodium hydroxymethanesulfonate in wheat flour by near-infrared spectroscopy. Food Anal. Methods 4(4), 550–558 (2011)

    Article  Google Scholar 

  18. Å. Rinnan, F. Van Den Berg, S.B. Engelsen, Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 28(10), 1201–1222 (2009)

    Article  CAS  Google Scholar 

  19. H.I. Kademi, B.H. Ulusoy, C. Hecer, Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Intl. 35(3), 201–220 (2019)

    Article  CAS  Google Scholar 

  20. A. López-Maestresalas, K. Insausti, C. Jarén, C. Pérez-Roncal, O. Urrutia, M.J. Beriain, S. Arazuri, Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control 98, 465–473 (2019)

    Article  Google Scholar 

  21. A. Savitzky, M.J. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  CAS  Google Scholar 

  22. K.A. Bakeev, Process analytical technology: spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  23. M. Khojastehnazhand, M.H. Khoshtaghaza, B. Mojaradi, M. Rezaei, M. Goodarzi, W. Saeys, Comparison of visible–near infrared and short wave infrared hyperspectral imaging for the evaluation of rainbow trout freshness. Food Res. Int. 56, 25–34 (2014)

    Article  CAS  Google Scholar 

  24. G. Destefanis, M.T. Barge, A. Brugiapaglia, S. Tassone, The use of principal component analysis (PCA) to characterize beef. Meat Sci. 56(3), 255–259 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. M. Peyvasteh, A. Popov, A. Bykov, I. Meglinski, Meat freshness revealed by visible to near-infrared spectroscopy and principal component analysis. J. Phys. Commun. 4(9), 095011 (2020)

    Article  CAS  Google Scholar 

  26. C. Syms, Principal components analysis (Elsevier, Amsterdam, 2008)

    Google Scholar 

  27. F. Pan, G. Song, X. Gan, Q. Gu, Consistent feature selection and its application to face recognition. J. Intell. Inf. Syst. 43(2), 307–321 (2014)

    Article  Google Scholar 

  28. A. Tharwat, T. Gaber, A. Ibrahim, A.E. Hassanien, Linear discriminant analysis: a detailed tutorial. AI Commun. 30(2), 169–190 (2017)

    Article  Google Scholar 

  29. K.H. Esbensen, B. Swarbrick, Multivariate data analysis, 6th edn. (IMPublising, Chichester, 2018)

    Google Scholar 

  30. K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. D. Ballabio, R. Todeschini, Multivariate classification for qualitative analysis. Infrared Spectrosc. Food Qual. Anal. Control 83, e102 (2009)

    Google Scholar 

  32. M. Rashvand, M. Omid, H. Mobli, M.S. Firouz, Adulteration detection in olive oil using dielectric technique and data mining. Sens. Bio-Sens. Res. 11, 33–36 (2016)

    Article  Google Scholar 

  33. M. Blanco, I. Villarroya, NIR spectroscopy: a rapid-response analytical tool. TrAC Trends Anal. Chem. 21(4), 240–250 (2002)

    Article  CAS  Google Scholar 

  34. D.F. Roa, P.R. Santagapita, M.P. Buera, M.P. Tolaba, Ball milling of Amaranth starch-enriched fraction. Changes on particle size, starch crystallinity, and functionality as a function of milling energy. Food Bioprocess Technol. 7(9), 2723–2731 (2014)

    Article  CAS  Google Scholar 

  35. F.A. Guzmán-Ortiz, H. Hernández-Sánchez, H. Yee-Madeira, E. San Martín-Martínez, M. del Carmen Robles-Ramírez, M. Rojas-López et al., Physico-chemical, nutritional and infrared spectroscopy evaluation of an optimized soybean/corn flour extrudate. J. Food Sci. Technol. 52(7), 4066–4077 (2015)

    Article  PubMed  Google Scholar 

  36. L. Hu, C. Yin, S. Ma, Z. Liu, Assessing the authenticity of black pepper using diffuse reflectance mid-infrared Fourier transform spectroscopy coupled with chemometrics. Comput. Electron. Agric. 154, 491–500 (2018)

    Article  Google Scholar 

  37. S. Wold, H. Martens, H. Wold, in The Multivariate Calibration Problem in Chemistry Solved by the PLS Method, eds. by B. Kågström, A. Ruhe. Matrix Pencils Lecture Notes in Mathematics, vol. 973 (Springer, Cham, 1983), pp. 286–293

    Chapter  Google Scholar 

  38. F.N. Arslan, G. Akin, ŞN. Karuk Elmas, B. Üner, I. Yilmaz, H.G. Janssen, A. Kenar, FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. J. Consum. Prot. Food Saf 15(3), 245–261 (2020)

    Article  CAS  Google Scholar 

  39. F. Tao, L. Liu, C. Kucha, M. Ngadi, Rapid and non-destructive detection of cassava flour adulterants in wheat flour using a handheld MicroNIR spectrometer. Biosys. Eng. 203, 34–43 (2021)

    Article  CAS  Google Scholar 

  40. L.C. Padierna, M. Carpio, A. Rojas-Dominguez, H. Puga, H. Fraire, A novel formulation of orthogonal polynomial kernel functions for SVM classifiers: the Gegenbauer family. Pattern Recogn. 84, 211–225 (2018)

    Article  Google Scholar 

  41. L.F. Siqueira, R.F.A. Júnior, A.A. de Araújo, C.L. Morais, K.M. Lima, LDA vs. QDA for FT-MIR prostate cancer tissue classification. Chemom. Intell. Lab. Syst. 162, 123–129 (2017)

    Article  CAS  Google Scholar 

  42. S.J. Dixon, R.G. Brereton, Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure. Chemom. Intell. Lab. Syst. 95(1), 1–17 (2009)

    Article  CAS  Google Scholar 

  43. M. Khanmohammadi, K. Ghasemi, A.B. Garmarudi, Genetic algorithm spectral feature selection coupled with quadratic discriminant analysis for ATR-FTIR spectrometric diagnosis of basal cell carcinoma via blood sample analysis. RSC Adv. 4(78), 41484–41490 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was done by central laboratory of university of Tabriz. The authors thank the personnel of this laboratory for their friendly cooperation during the experiments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Mahmoudi.

Ethics declarations

Conflict of interest

There is no potential conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, A., Mahmoudi, A. & Khojastehnazhand, M. Detection of sodium hydrosulfite adulteration in wheat flour by FT-MIR spectroscopy. Food Measure 17, 1932–1939 (2023). https://doi.org/10.1007/s11694-022-01763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01763-x

Keywords

Navigation