Skip to main content
Log in

Thermal degradation characteristics of amino acids in rainbow trout fillets during traditional high temperature short time processing and microwave processing

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of this study was to explore the thermal degradation characteristics of amino acids in rainbow trout (Oncorhynchus mykiss) fillets processed by microwave and different traditional high temperature short time (HTST) sterilization. A custom-built thermal processing system was used to conduct the HTST processing with different parameters including heating rate (5.52–19.56 °C/min), maximum heating temperature (123, 133 °C) and thermal processing level (F0 = 3.0, 6.0 min). Microwave processing was conducted by a single-mode pilot microwave processing system. Results showed that rainbow trout fillets in processing with higher heating rates retained obviously more amino acids, which verified the great potential of HTST processing in the quality improvement of solid food products. Furthermore, heating rate had no effect on the thermal sensitivity of each amino acid. Raising the maximum heating temperature led to higher thermal degradation of amino acids, which demonstrated that extra high temperature might impair the quality improvement of traditional HTST processing. Compared with traditional HTST processed samples, the retention of amino acids in fish fillets processed by microwave processing was higher. Furthermore, the degradation rate of each amino acid in microwave processed samples was different with traditional HTST processed samples. These results showed that microwave processing could retain higher product quality and may provide non-thermal effects due to alternative electromagnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HTST:

High temperature short time

Asp:

aspartic acid

Glu:

glutamic acid

Ser:

serine

Gly:

glycine

Arg:

Arginine

Ala:

alanine

Tyr:

tyrosine

Cys:

Cysteine

Hyp:

Hydroxyproline

Pro:

proline

His:

histidine

Thr:

threonine

Val:

valine

Met:

methionine

Trp:

Tryptophan

Phe:

phenylalanine

Ile:

isoleucine

Leu:

leucine

Lys:

lysine

TAA:

total amino acids

EAA:

total essential amino acids

References

  1. J. Tang, Unlocking potentials of microwaves for Food Safety and Quality. J. Food Sci. 80(8), E1776–E1793 (2015). https://doi.org/10.1111/1750-3841.12959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G.B. Awuah, H.S. Ramaswamy, A. Economides, Thermal processing and quality: principles and overview. Chem. Eng. Process. 46(6), 584–602 (2007). https://doi.org/10.1016/j.cep.2006.08.004

    Article  CAS  Google Scholar 

  3. C. Guo, Y. Wang, D. Luan, Non-thermal effects of microwave processing on inactivation of Clostridium Sporogenes inoculated in salmon fillets. Lwt 133, 109861 (2020). https://doi.org/10.1016/j.lwt.2020.109861

    Article  CAS  Google Scholar 

  4. C. Guo, Y. Wang, D. Luan, Study the synergism of microwave thermal and non-thermal effects on microbial inactivation and fatty acid quality of salmon fillet during pasteurization process. Lwt 152, 112280 (2021). https://doi.org/10.1016/j.lwt.2021.112280

    Article  CAS  Google Scholar 

  5. Q. Xue, C. Xue, D. Luan, Y. Wen, S. Bi, Z. Wei, H. Mou, Comprehensive investigation into quality of pasteurized Oncorhynchus keta Walbaum fillets and non-thermal effects of microwave. Lwt 146, 111466 (2021). https://doi.org/10.1016/j.lwt.2021.111466

    Article  CAS  Google Scholar 

  6. D.B. Lund, Kinetics of physical changes in foods. Physical and Chemical Properties of Food. American Society of Agricultural Engineers, Michigan, USA., 1986

    Google Scholar 

  7. P. Pillaiyar, K. Singaravadivel, H.S.R. Desikachar, Quality changes in HTST processing of rice parboiling. J. Sci. Food Agric. 65(2), 229–231 (1994). https://doi.org/10.1002/jsfa.2740650217

    Article  Google Scholar 

  8. P.C. Lorenzen, I. Clawin-RÄDecker, K. Einhoff, P. Hammer, R. Hartmann, W. Hoffmann, D. Martin, J. Molkentin, H.G. Walte, M. Devrese, A survey of the quality of extended shelf life (ESL) milk in relation to HTST and UHT milk. Int. J. Dairy Technol. 64(2), 166–178 (2011). https://doi.org/10.1111/j.1471-0307.2010.00656.x

    Article  CAS  Google Scholar 

  9. G.K.M.K.M.G.R.S.E., Berghofer, Effect of Thermal Treatment on the quality of cloudy Apple Juice. J. Agricultural Food Chem. 54(15), 5453–5460 (2006). https://doi.org/10.1021/jf0606858

    Article  CAS  Google Scholar 

  10. H.X. Dong Chen, X. Guo, Z. Qin, X. Pang, X.H.X. Liao, J. Wu, Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science Emerging Technologies 19(1), 85–94 (2013). https://doi.org/10.1016/j.ifset.2013.03.003

    Article  CAS  Google Scholar 

  11. Z. Caplan, B.D. M., Shelf life of pasteurized microfiltered milk containing 2% fat. J. Dairy Sci. 96(12), 8035–8046 (2013). https://doi.org/10.3168/jds.2013-6657

    Article  CAS  PubMed  Google Scholar 

  12. T.L. Hui, X. Zhou, L. Bi, Y. Zhao, Wang, Xiaojun, Liao, comparison of high hydrostatic pressure, High-PressureCarbon Dioxide and High-Temperature Short-Time Processing on Quality of Mulberry Juice. Food & Bioprocess Technology 9(2), 217–231 (2016). https://doi.org/10.1007/s11947-015-1606-9

    Article  CAS  Google Scholar 

  13. X.Z. Fengxia Liu, L. Zhao, Y. Wang, X. Liao, Potential of high-pressure processing and high-temperature/short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innovative Food Science Emerging Technologies 34, 51–58 (2016). https://doi.org/10.1016/j.ifset.2015.12.030

    Article  CAS  Google Scholar 

  14. S.S.A. Kakoli Pegu, Comparative assessment of HTST, hydrodynamic cavitation and ultrasonication on physico-chemical properties, microstructure, microbial and enzyme inactivation of raw milk. Innovative Food Science and Emerging Technologies 69(3), 102640 (2021). https://doi.org/10.1016/j.ifset.2021.102640

    Article  CAS  Google Scholar 

  15. F. Liu, Y. Wang, R. Li, X. Bi, X. Liao, Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innovative Food Science Emerging Technologies 21, 35–43 (2014). https://doi.org/10.1016/j.ifset.2013.09.015

    Article  CAS  Google Scholar 

  16. A.A. Teixeira, aG.S. Tucker, On-line retort control in thermal sterilization of canned foods, Food control, 8 (1), 13–20 (1997). https://doi.org/10.1016/S0956-7135(96)00056-4

  17. E.R. Bornhorst, F. Liu, J. Tang, S.S. Sablani, G.V. Barbosa-Cánovas, Food Quality Evaluation using Model Foods: a Comparison Study between Microwave-Assisted and Conventional Thermal Pasteurization Processes, Food Bioprocess Technol., 10 (7), 1248–1256 (2017). https://doi.org/10.1007/s11947-017-1900-9

  18. F. Kong, Kinetics of Salmon (Oncorhynchus gorbuscha) Quality Changes During Thermal Processing (Washington State University, 2007)

  19. J. Peng, J. Tang, D. Luan, F. Liu, Z. Tang, F. Li, W. Zhang, Microwave pasteurization of pre-packaged carrots. J. Food Eng. 202, 56–64 (2017). https://doi.org/10.1016/j.jfoodeng.2017.01.003

    Article  CAS  Google Scholar 

  20. U. Nurhan, Change in proximate, amino acid and fatty acid contents in muscle tissue of rainbow trout (Oncorhynchus mykiss) after cooking. Int. J. Food Sci. Technol. 42(9), 1087–1093 (2007). https://doi.org/10.1111/j.1365-2621.2006.01354.x

    Article  CAS  Google Scholar 

  21. F.A. Oduro, N.-D. Choi, H.-S. Ryu, Effects of Cooking Conditions on the protein quality of Chub Mackerel Scomber japonicus, Fisheries and aquatic sciences, 14 (4), 257–265 (2011). https://doi.org/10.5657/fas.2011.0257

  22. D. Luan, J. Tang, F. Liu, Z. Tang, F. Li, H. Lin, B. Stewart, Dielectric properties of bentonite water pastes used for stable loads in microwave thermal processing systems. J. Food Eng. 161, 40–47 (2015). https://doi.org/10.1016/j.jfoodeng.2015.02.014

    Article  CAS  Google Scholar 

  23. J. Lerfall, A.N. Jakobsen, D. Skipnes, L. Waldenstrom, S. Hoel, B.T. Rotabakk, Comparative evaluation on the Quality and Shelf life of Atlantic Salmon (Salmo salar L) Filets using microwave and conventional pasteurization in combination with novel packaging methods. J. Food Sci. 83(12), 3099–3109 (2018). https://doi.org/10.1111/1750-3841.14384

    Article  CAS  PubMed  Google Scholar 

  24. M.A. Herrero, J.M. Kremsner, C. C.O.J.J.o.O, Kappe, Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem. 73(1), 36–47 (2008). https://doi.org/10.1021/jo7022697

    Article  CAS  PubMed  Google Scholar 

  25. Q. Xue, D. Luan, Y. Liu, C. Guo, Z. Pan, H.U. Leiqi, Y. Chen, C. Xue, Development of Microwave Pasteurization Process for soft-packed Oncorhynchus mykiss Fillet (Food and Fermentation Industries, 2019)

  26. J. Tang, Y.-K. Hong, S. Inanoglu, F. Liu, Microwave pasteurization for ready-to-eat meals. Curr. Opin. Food Sci. 23, 133–141 (2018). https://doi.org/10.1016/j.cofs.2018.10.004

    Article  Google Scholar 

  27. D. Luan, Y. Wang, J. Tang, D. Jain, Frequency distribution in domestic microwave ovens and its influence on Heating Pattern. J. Food Sci. 82(2), 429–436 (2017). https://doi.org/10.1111/1750-3841.13587

    Article  CAS  PubMed  Google Scholar 

  28. R. Zhang, Y. Wang, X. Wang, D.J.F.C. Luan, Study of heating characteristics for a continuous 915 MHz pilot scale microwave thawing system. Food control 104, 105–114 (2019). https://doi.org/10.1016/j.foodcont.2019.04.030

    Article  CAS  Google Scholar 

  29. M.N.S.A. Zuraini, M.H. Solihah, Y.M. Goh, A.K. Arifah, M.S. Zakaria, N. Somchit, M.A. Rajion, Z.A. Zakaria, A. M. Mat Jais, fatty acid and amino acid composition of three local malaysian Channa spp fish. Food Chem. 97(4), 674–678 (2006). https://doi.org/10.1016/j.foodchem.2005.04.031

    Article  CAS  Google Scholar 

  30. N. Erkan, Ö Özden, A. SelçUk, Effect of frying, grilling, and steaming on amino acid composition of marine fishes. J. Med. Food 13(6), 1524–1531 (2010). https://doi.org/10.1089/jmf.2009.0203

    Article  CAS  PubMed  Google Scholar 

  31. G. Baki Birol, K. Sedat, Dilara, Comparison of food, amino acid and fatty acid compositions of Wild and Cultivated Sea Bass (Dicentrarchus labrax L.,1758) turkish. J. Fisheries Aquat. Sci. 15(1), 175–179 (2015). https://doi.org/10.4194/1303-2712-v15_1_19

    Article  Google Scholar 

  32. G. Wu, Functional Amino Acids in Growth, Reproduction, and Health, Advances in Nutrition, 1 (1), 31–37 (2010). https://doi.org/10.3945/an.110.1008

  33. M. Sohn, C.T. Ho, Ammonia Generation during Thermal degradation of amino acids. J. agric. food Chem. 43(12), 55–72 (1995). https://doi.org/10.1021/JF00060A001

    Article  Google Scholar 

  34. J.Hidalgo Francisco, and, Esmeralda, Alcón, and, Rosario, Zamora, Cysteine- and serine-thermal degradation products promote the formation of Strecker aldehydes in amino acid reaction mixtures. Food Res. Int. 54(2), 1394–1399 (2013). https://doi.org/10.1016/j.foodres.2013.09.006

    Article  CAS  Google Scholar 

  35. H. Zhao, N. Cheng, Y. Zhang, Z. Sun, W. Zhou, Y. Wang, W. Cao, The effects of different thermal treatments on amino acid contents and chemometric-based identification of overheated honey, LWT-food science and technology, (2018) S0023643818304183. https://doi.org/10.1016/j.lwt.2018.05.004

  36. H.J. Alipour, B. Shabanpour, A. Shabani, A.S. Mahoonak, Effects of cooking methods on physico-chemical and nutritional properties of Persian sturgeon Acipenser persicus fillet, International Aquatic Research, 2 (1), 15–23 (2010). ISSN:2008–4935

  37. R. Domínguez, P. Borrajo, J.M. Lorenzo, The effect of cooking methods on nutritional value of foal meat. J. Food Compos. Anal. 43, 61–67 (2015). https://doi.org/10.1016/j.jfca.2015.04.007

    Article  CAS  Google Scholar 

  38. L.CuiY.Wahidu Zzaman, MdJ.Haque Akanda, T.A. Yang, A.M. Easa, Influence of Superheated Steam Cooking on Proximate, fatty acid Profile, and amino acid composition of Catfish (Clarias batrachus) Fillets. Turkish J. Fisheries Aquat. Sci. 17(5), 935–943 (2017). https://doi.org/10.4194/1303-2712-v17_5_09

    Article  Google Scholar 

  39. T. Wu, L. Mao, Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets. Food Chem. 110(3), 647–653 (2008). https://doi.org/10.1016/j.foodchem.2008.02.058

    Article  CAS  Google Scholar 

  40. Y. Deng, Y. Luo, Y. Wang, Y. Zhao, Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chem. 171, 168–176 (2015). https://doi.org/10.1016/j.foodchem.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  41. D. Sarma, P.D. Das, P. Das, H.C.S. Bisht, M.S. Akhtar, A. Ciji, Fatty acid, amino acid and mineral composition of rainbow trout (Oncorhynchus mykiss) of indian Himalaya, Indian J. Anim. Res., 49 (3), (2015). https://doi.org/10.5958/0976-0555.2015.00104.1

  42. Y. Wei, S.P. Xin, Y.Q. Zhao, J.W. Cen, H. Huang, Analysis of nutrient composition, amino acid and fatty acid Profile in the muscle of a Farmed Rainbow Trout (Oncorhynchus Mykiss), DEStech transactions on Environment Energy, (2017). https://doi.org/10.12783/dteees/sses/icfse2016/10668

  43. D. Luan, J. Tang, P.D. Pedrow, F. Liu, Z. Tang, Performance of mobile metallic temperature sensors in high power microwave heating systems. J. Food Eng. 149, 114–122 (2015). https://doi.org/10.1016/j.jfoodeng.2014.09.041

    Article  Google Scholar 

  44. D. Luan, J. Tang, P.D. Pedrow, F. Liu, Z. Tang, Using mobile metallic temperature sensors in continuous microwave assisted sterilization (MATS) systems. J. Food Eng. 119(3), 552–560 (2013). https://doi.org/10.1016/j.jfoodeng.2013.06.003

    Article  Google Scholar 

  45. Z. Tang, G. Mikhaylenko, F. Liu, J.H. Mah, R. Pandit, F. Younce, J. Tang, Microwave sterilization of sliced beef in gravy in 7-oz trays. J. Food Eng. 89(4), 375–383 (2008). https://doi.org/10.1016/j.jfoodeng.2008.04.025

    Article  Google Scholar 

  46. R.T.E. Toledo, Thermal process calculations. Chapter 8 in Fundaments of Food Process Engineering, Chapman & Hall, New York, NY, 1991. pp. 195–244

    Chapter  Google Scholar 

  47. L.I. Yan, Y. Xie, F.H.J.H.AS. Yang, Detection Amino Acids in Muscle of Hypophthalmichthys molitrix,Aristichthys nobilis and Ctenopharyngodon idellus by HPLC, (2018)

  48. E.L. Schwarz, W.L. Roberts, M. Pasquali, Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection. Clin. Chim. Acta 354(1–2), 83–90 (2005). https://doi.org/10.1016/j.cccn.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  49. B.L. Oser, An integrated essential amino acid index for predicting the biological value of proteins. Protein Amino Acid Nutrition (1959). https://doi.org/10.1016/B978-0-12-395683-5.50014-6

    Article  Google Scholar 

  50. A. Rebole, S. Velasco, M.L. Rodriguez, J. Trevino, C. Alzueta, J.L. Tejedor, L.T. Ortiz, Nutrient content in the muscle and skin of fillets from farmed rainbow trout (Oncorhynchus mykiss), Food Chem, 174 (May 1), 614–620 (2015). https://doi.org/10.1016/j.foodchem.2014.11.072

  51. A.F. Lopes, C.M. Alfaia, A.M. Partidario, J.P. Lemos, J.A. Prates, Influence of household cooking methods on amino acids and minerals of Barrosa-PDO veal. Meat Sci. 99, 38–43 (2015). https://doi.org/10.1016/j.meatsci.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  52. A. Ismail, E. Hainida Khairul, Ikram, Effects of cooking practices (boiling and frying) on the protein and amino acids contents of four selected fishes. Nutr. Food Sci. 34(2), 54–59 (2004). https://doi.org/10.1108/00346650410529005

    Article  Google Scholar 

  53. O.O. Oluwaniyi, O.O. Dosumu, G.V. Awolola, Effect of local processing methods (boiling, frying and roasting) on the amino acid composition of four marine fishes commonly consumed in Nigeria. Food Chem. 123(4), 1000–1006 (2010). https://doi.org/10.1016/j.foodchem.2010.05.051

    Article  CAS  Google Scholar 

  54. R.I. Perez-Martin, J.M. Franco, S. Aubourg, J.M. Gallardo, Changes in free amino acids content in albacore (Thunnus alalunga) muscle during thermal processing. Z. für Lebensmittel-Untersuchung und Forschung 187(5), 432–435 (1988). https://doi.org/10.1007/BF01122644

    Article  CAS  Google Scholar 

  55. J. Opstvedt, R. Miller, R.W. Hardy, J. Spinelli, Heat-induced changes in sulfhydryl groups and disulfide bonds in fish protein and their effect on protein and amino acid digestibility in rainbow trout (Salmo gairdneri). J. Agricultural Food Chem. 32(4), 929–935 (1984). https://doi.org/10.1021/jf00124a056

    Article  CAS  Google Scholar 

  56. L. Hu, S. Ren, Q. Shen, J. Chen, X. Ye, J. Ling, Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. RSC Adv. 7(44), 27496–27505 (2017). https://doi.org/10.1039/C7RA03408C

    Article  CAS  Google Scholar 

  57. Z.E. Sikorski, Chemical & functional properties of food proteins, Chemical & functional properties of food proteins, US, 2001. ISSN: 1566769604

  58. A.M. Castrillon, M.P. Navarro, M.G. Arias, Tuna protein nutritional quality changes after canning. J. Food Sci. 61(6), 1250–1253 (1996). https://doi.org/10.1111/j.1365-2621.1996.tb10972.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of National Key Research and Development (R&D) in China [grant number 2019YFD0901804] and the Program of Shanghai Natural & Science Foundation in China [grant number 20ZR1423800].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglei Luan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y. & Luan, D. Thermal degradation characteristics of amino acids in rainbow trout fillets during traditional high temperature short time processing and microwave processing. Food Measure 17, 1940–1952 (2023). https://doi.org/10.1007/s11694-022-01730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01730-6

Keywords

Navigation