Skip to main content
Log in

Optimisation extraction procedure and identification of phenolic compounds from fractional extract of corn silk (Zea mays hair) using LC-TOF/MS system

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Presently, there is an increased interest in the production and purification of vegetable extracts by both pharmacological and medicinal sectors. This study aimed to optimise the phenolic extraction of corn silk and to identify phenolic compounds of the fractional extract of corn silk. Single factor experiment was used to optimise the extraction parameters. The liquid chromatography-quadrupole time-of-flight-mass spectrometer (LC-TOF/MS) system was used to identify different types of phenolic compounds in the selected fractions. The optimum conditions (i.e. extraction time of 30 min, extraction temperature of 50 °C, the solid-to-solvent ratio of 1:10 and 40% ethanol) were obtained. The corn silk was extracted using the optimum conditions and the extracted was further fractionated with hexane and ethyl acetate, subsequently. The ethyl acetate fraction exhibited the most significant free radical-scavenging activity and the highest amount of total phenolic compounds. Therefore, ethyl acetate fraction was subjected to further analysis using LC-TOF/MS. A total of 26 compounds were identified. The fractional extract was found to be rich in flavonoid compounds such as flavones, flavonols, flavanols, flavone C-glycosides, flavonols, flavonol O-glycosides, and isoflavonoids. Flavanols were the major group of flavonoids found in this fractional extract. In summary, ethyl acetate fraction of corn silk can be a good source of phenolic compounds that can be useful for application in both nutraceutical and pharmaceutical sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Khoddami, M.A. Wilkes, T.H. Roberts, Techniques for analysis of plant phenolic compounds. Molecules 18, 2328–2375 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. D. Vauzour, K. Vafeiadou, J.P.E. Spencer, in Phytonutrients, ed. By A. Salter, H. Wiseman, G. Tucker. (Wiley-Blackwell, Chichester, 2012), pp. 110–145

    Chapter  Google Scholar 

  3. D. Lamoral-Theys, L. Pottier, F. Dufrasne, J. Neve, J. Dubois, A. Kornienko, R. Kiss, L. Ingrassia, Natural polyphenols that display anticancer properties through inhibition of kinase activity. Curr. Med. Chem. 17, 812–825 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. J. Dai, R.J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. A. Spatafora, C. Tringali, Natural-derived polyphenols as potential anticancer agents. Med. Chem. 12, 902–918 (2012)

    CAS  Google Scholar 

  6. M. Kampa, A.-P. Nifli, G. Notas, E. Castanas, Polyphenols and cancer cell growth. Rev. Physiol. Biochem. Pharmacol. 159, 79–113 (2007)

    CAS  PubMed  Google Scholar 

  7. P. Fresco, F. Borges, M.P.M. Marques, C. Diniz, The anticancer properties of dietary polyphenols and its relation with apoptosis. Curr. Pharm. Des. 16, 114–134 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Bahadoran, P. Mirmiran, F. Azizi, Dietary polyphenols as potential nutraceuticals in the management of diabetes: a review. J. Diabetes Metab. Disord. 12, 43 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. F.F. Anhê, Y. Desjardins, G. Pilon, S. Dudonné, M.I. Genoves, F.M. Lajol, A. Marette, Polyphenols and type 2 diabetes: a prospective review. PharmaNutrition 1, 105–114 (2013)

    Article  CAS  Google Scholar 

  10. A.M. Ali, Anti-diabetic potential of phenolic compounds: a review. Int. J. Food Prop. 16, 91–103 (2013)

    Article  CAS  Google Scholar 

  11. S. Habtemariam, G.K. Varghese, The antidiabetic therapeutic potential of dietary polyphenols. Curr. Pharm. Biotechnol. 15, 91–400 (2014)

    Article  CAS  Google Scholar 

  12. R.M. van Dam, N. Naidoo, R. Landberg, Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr. Opin. Lipidol. 24, 5–33 (2013)

    Google Scholar 

  13. B. Manach, A. Mazur, A. Scalbert, Polyphenols and prevention of cardiovascular diseases. Curr. Opin. Lipidol. 16, 77–84 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. L.B.M. Tijburg, T. Matter, J.D. Folts, U.M. Weisgerbe, M.B. Katan, Tea flavonoids and cardiovascular diseases: a review. Crit. Rev. Food Sci. Nutr. 37, 771–785 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. M. Quiñones, M. Miguel, A. Aleixandre, Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 68, 125–131 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. T.M. Takeuchi, C.G. Pereir, M.E.M. Braga, M.R.J. Maróstica, P.F. Leal, M.A.A. Meireles, in Extracting bioactive compounds for food products: theory and application, ed. by M.A.A. Meireles (CRC Press, Boca Raton, 2009), pp. 138–218

    Google Scholar 

  17. M.-T. Ren, J. Chen, Y. Song, L.-S. Sheng, P. Li, L.-W. Qi, Identification and quantification of 32 bioactive compounds in Lonicera species by high performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Pharm. Biomed. Anal. 48, 1351–1360 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. J. Guo, T. Liu, L. Han, Y. Liu, The effects of corn silk on glycaemic metabolism. Nutr. Metab. 6, 47 (2009)

    Article  CAS  Google Scholar 

  19. Z. Maksimović, Đ Malenčić, N. Kovačević, Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 96, 873–877 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. J. Liu, S. Lin, Z. Wang, C. Wang, E. Wang, Y. Zhang, J. Liu, Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability. Food Bioprod. Process. 89, 333–339 (2011)

    Article  CAS  Google Scholar 

  21. K. Hasanudin, P. Hashim, S. Mustafa, Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 17, 9697–9715 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. S.W. Chan, C.Y. Lee, C.F. Yap, C.W. W.A.W.Mustapha, Ho, Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. Int. Food Res. J. 16, 203–213 (2009)

    Google Scholar 

  23. C. Maheshwari, M.Y. Kumar, S.K. Verma, V.K. Singh, S.N. Singh, Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 49, 2422–2428 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. G. Miliauskas, P.R. Venskutonis, T.A.Van Beek, Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85, 231–237 (2008)

    Article  CAS  Google Scholar 

  25. J. Han, X. Weng, K. Bi, Antioxidants from a Chinese medicinal herb-Lithospermum erythrorhizon. Food Chem. 106, 2–10 (2008)

    Article  CAS  Google Scholar 

  26. Y.Y. Lim, T.T. Lim, J.J. Tee, Antioxidant properties of several tropical fruits: a comparative study. Food Chem. 103, 1003–1008 (2007)

    Article  CAS  Google Scholar 

  27. J. Jakopič, R. Veberič, Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agriculturae Slovenica 93, 11–15 (2009)

    Article  Google Scholar 

  28. L. Tomsone, Z. Kruma, R. Galoburda, Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana). World Acad. Sci. Eng. Technol. 64, 903–908 (2012)

    Google Scholar 

  29. I.S.C. Sulaiman, M. Basri, H.R.F. Masoumi, W.J. Chee, S.E. Ashari, M. Ismail, Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem. Cent. J. 11, 54 (2017)

    Article  Google Scholar 

  30. P.W. Tan, C.P. Ta, C.W. Ho, Antioxidant properties: effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). Int. Food Res. J. 18, 557–562 (2011)

    CAS  Google Scholar 

  31. D.T.P. Lien, P.T.B. Tram, H.T. Toan, Effects of extraction process on phenolic content and antioxidant activity of soybean. J. Food Nutri. Sci. 3, 33–38 (2015)

    CAS  Google Scholar 

  32. P.W. Tan, C.P. Tan, C.W. Ho, Antioxidant properties: effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). Int. Food Res. J. 18, 557–562 (2011)

    CAS  Google Scholar 

  33. S. La, C.M. Sia, G.A. Akowuah, P.N. Okechukwu, H.S. Yim, The effect of extraction conditions on total phenolic content and free radical scavenging capacity of selected tropical fruits’ peel. Health Environ. J. 4, 80–102 (2013)

    Google Scholar 

  34. M. Nakamura, J.-H. Ra, Y. Jee, J.-S. Kim, Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J. Food Drug Analys. 25, 316–326 (2017)

    Article  CAS  Google Scholar 

  35. N. Das, M.E. Islam, N. Jahan, M.S. Islam, A. Khan, M.R. Islam, M.S. Parvin, Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC Complement. Altern. Med. 14, 5 (2014)

    Article  CAS  Google Scholar 

  36. J.B. Harborne, H. Baxter, in The Handbook of Natural Flavonoids, vol. 2. ed. by J.B. By, H. Harborne, Baxter (John Wiley & Sons, Chichester, 1999)

    Google Scholar 

  37. J.P. Metabolomics, (2008). http://metabolomics.jp/wiki/Reference:Zhang_PC:Xu_SX:,Chin._Chem._Lett.,2002,13,337. Accessed 2 February 2017

  38. M. Martínez-Vázquez, T.O.R. Apan, A.L. Lastra, R. Bye, A comparative study of the analgesic and anti-inflammatory activities of pectolinarin isolated from Cirsium subcoriaceum and linarin isolated from Buddleia cordata. Planta Med. 64, 134–137 (1998)

    Article  PubMed  Google Scholar 

  39. H. Lim, K.H. Son, H.W. Chang, K. Bae, S.S. Kang, H.P. Kim, Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol. Pharm. Bull. 31, 2063–2067 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. HMDB, Showing metabocard for Apigenin 7-O-(2″-O-acetylglucoside) (HMDB37341). (2017). http://www.hmdb.ca/metabolites/HMDB37341. Accessed 6 March 2017

  41. S. Kitanaka, M. Takido, Studies on the constituents of the Leaves of Cassia torosa Cav. II. The structure of two novel flavones, Torosaflavone C and D. Chem. Pharm. Bull. 39, 3254–3257 (1991)

    Article  CAS  Google Scholar 

  42. K. Chakrabarty, H.M. Chawla, D.K. Rastogi, Javanin, a new flavone rhamnoside from Cassia javanica immature leaves. Indian J. Chem. Sect. B. 23, 543–545 (1984)

    Google Scholar 

  43. J.L. Ingham, K.R. Markham, S.Z. Dziedzic, G.S. Pope, Puerarin 6 ″-O-β-apiofuranoside, a C-glycosylisoflavone O-glycoside from Pueraria mirifica. Phytochemistry 25, 1772–1775 (1986)

    Article  CAS  Google Scholar 

  44. M.E. Sakalem, G. Negri, R. Tabach, Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Rev. Bras. Farmacogn. 22, 1219–1232 (2012)

    Article  CAS  Google Scholar 

  45. G. Flamini, Flavonoids and other compounds from the aerial parts of Viola etrusca. Chem. Biodivers. 4, 139–144 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. M. Kaneta, N. Sugiyama, Identification of flavone compounds in eighteen Gramineae species. Agric. Biol. Chem. 37, 2663–2665 (1973)

    Article  CAS  Google Scholar 

  47. A. Wollenweber, J. Favre-Bonvin, M. Jay, A novel type of flavonoids: flavonol esters from fern exudates. Zeitschrift für Naturforschung C 33, 831–835 (1978)

    Article  Google Scholar 

  48. K. Cimanga, T. De Bruyne, A. Lasure, Q. Li, L. Pieters, M. Claeys, D.V. Berghe, K. Kambu, L. Tona, A. Vlietinck, Flavonoid O-glycosides from the leaves of Morinda morindoides. Phytochemistry 38, 1301–1303 (1995)

    Article  CAS  Google Scholar 

  49. A. Brito, J.E. Ramirez, C. Areche, B. Sepúlveda, M.J. Simirgiotis, HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 19, 17400–17421 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. H. Michael, J. Salib, M. Ishak, New methoxyflavone glycosides from Verbena bipinnatifida Nutt. Die Pharmazie. 56, 348–349 (2001)

    CAS  PubMed  Google Scholar 

  51. M. Leone, D. Zhai, S. Sareth, S. Kitada, J.C. Reed, M. Pellecchia, Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res. 63, 8118–8121 (2003)

    CAS  PubMed  Google Scholar 

  52. A.L. Davis, Y. Cai, A.P. Davies, J.R. Lewis, 1H and 13C NMR assignments of some green tea polyphenols. Magn. Reson. Chem. 34, 887–890 (1996)

    Article  CAS  Google Scholar 

  53. X. Wan, H.E. Nursten, Y. Cai, A.L. Davis, J.P.G. Wilkins, A.P. Davies, A new type of tea pigment-from the chemical oxidation of epicatechin gallate and isolated from tea. J. Sci. Food Agric. 74, 401–408 (1997)

    Article  CAS  Google Scholar 

  54. S.J. Baek, J.-S. Kim, F.R. Jackson, T.E. Eling, M.F. McEntee, S.-H. Lee, Epicatechin gallate-induced expression of NAG-1 is associated with growth inhibition and apoptosis in colon cancer cells. Carcinogenesis 25, 2425–2432 (2004)

    Article  CAS  PubMed  Google Scholar 

  55. Z. Zhou, C. Yang, Chemical constituents of crude green tea, the material of Pu-er tea in Yunnan. Acta Bot. Yunnanica 22, 343–350 (1999)

    Google Scholar 

  56. R. Amarowicz, F. Shahidi, Presence of two forms of methylated (−)-epigallocatechin-3-gallate in green tea. Mol. Nutri. Food Res. 47, 21–23 (2003)

    CAS  Google Scholar 

  57. Y. Fujimura, H. Tachibana, M. Maeda-Yamamoto, T. Miyase, M. Sano, K. Yamada, Antiallergic tea catechin, (−)-epigallocatechin-3-O-(3-O-methyl)-gallate, suppresses FcεRI expression in human basophilic KU812 cells. J. Agric. Food Chem. 50, 5729–5734 (2002)

    Article  CAS  PubMed  Google Scholar 

  58. M. Cheng, X. Zhang, Y. Miao, J. Cao, Z. Wu, P. Weng, The modulatory effect of (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3 ″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Res. Int. 92, 9–16 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. A. Hashimoto, G.-I. Nonaka, I. Nishioka, Tannins and related compounds. LVI. Isolation of four new acylated flavan-3-ols from oolong tea. Chem. Pharm. Bull. 35, 611–616 (1987)

    Article  CAS  Google Scholar 

  60. N. Morita, M. Arisawa, Y. Kondo, T. Takemoto, Studies on constituents of Iris genus plants. III. The constituents of Iris florentina L. Chem. Pharm. Bull. 21, 600–603 (1973)

    Article  CAS  Google Scholar 

  61. K. Gopinath, A. Kidwai, L. Prakash, The chemical examination of Iris nepalensis—I: structure of irisolone. Tetrahedron 16, 201–205 (1961)

    Article  CAS  Google Scholar 

  62. J.L. Ingham, Fungal modification of pterocarpan phytoalexins from Melilotus alba and Trifolium pratense. Phytochemistry 15, 1489–1495 (1976)

    Article  CAS  Google Scholar 

  63. T.R. Govindachari, K. Nagarajan, B.R. Pai, Chemical examination of Wedelia calendulacea. Part I. structure of wedelolactone. J. Chem. Soc. https://doi.org/10.1039/JR9560000629

    Article  Google Scholar 

  64. S. Sarveswaran, S.C. Gautam, J. Ghosh, Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCε without inhibiting Akt. Int. J. Oncol. 41, 2191–2199 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S.-C. Ren, Z.-L. Liu, X.-L. Ding, Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). J. Med. Plants Res. 3, 1009–1015 (2009)

    CAS  Google Scholar 

  66. S. Žilić, M. Janković, Z. Basić, J. Vančetović, V. Maksimović, Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L): Comparison with medicinal herbs. J. Cereal Sci. 69, 363–370 (2016)

    Article  CAS  Google Scholar 

  67. S. Sárosi, J. Bernáth, G. Burchi, M. Antonetti, A. Bertoli, L. Pistelli, S. Benvenuti, Effect of different plant origins and climatic conditions on the total phenolic content and total antioxidant capacity of self-heal (Prunella vulgaris L.). XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): A New Look at Medicinal and Aromatic Plants, 2010. pp. 49–55

Download references

Acknowledgements

Special thanks go to Ministry of Higher Education (MOHE) of Malaysia and Universiti Sains Malaysia. This research was supported by Grants from MOHE of Malaysia (203/PPSK/6171190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. I. Wan Rosli.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurraihana, H., Wan Rosli, W.I., Sabreena, S. et al. Optimisation extraction procedure and identification of phenolic compounds from fractional extract of corn silk (Zea mays hair) using LC-TOF/MS system. Food Measure 12, 1852–1862 (2018). https://doi.org/10.1007/s11694-018-9799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9799-z

Keywords

Navigation