Skip to main content
Log in

5′-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5′-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5′-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5′-tiRNA-Gln knockdown yielded opposite results. 5′-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5′-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5′-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5′-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5′-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L, Wang L, Liu Y, Liu J, Zhang M, Qi J, Yu S, Afshin A, Gakidou E, Glenn S, Krish VS, Miller-Petrie MK, Mountjoy-Venning WC, Mullany EC, Redford SB, Liu H, Naghavi M, Hay SI, Wang L, Murray CJL, Liang X. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 394(10204): 1145–1158

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249

    Article  PubMed  Google Scholar 

  3. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kobayashi T, Aikata H, Kobayashi T, Ohdan H, Arihiro K, Chayama K. Patients with early recurrence of hepatocellular carcinoma have poor prognosis. Hepatobiliary Pancreat Dis Int 2017; 16(3): 279–288

    Article  PubMed  Google Scholar 

  5. Wang J, Zhu S, Meng N, He Y, Lu R, Yan GR. ncRNA-encoded peptides or proteins and cancer. Mol Ther 2019; 27(10): 1718–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong CM, Tsang FHC, Ng IOL. Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 2018; 15(3): 137–151

    Article  CAS  PubMed  Google Scholar 

  7. Klingenberg M, Matsuda A, Diederichs S, Patel T. Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets. J Hepatol 2017; 67(3): 603–618

    Article  CAS  PubMed  Google Scholar 

  8. Su Z, Wilson B, Kumar P, Dutta A. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu Rev Genet 2020; 54(1): 47–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim HK, Yeom JH, Kay MA. Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther 2020; 28(11): 2340–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011; 43(4): 613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009; 185(1): 35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li S, Hu GF. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 2012; 227(7): 2822–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee YS, Shibata Y, Malhotra A, Dutta A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23(22): 2639–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015; 161(4): 790–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng LL, Xu WL, Liu S, Sun WJ, Li JH, Wu J, Yang JH, Qu LH. tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Res 2016; 44(W1): W185–W193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng T, Hua Y, Sun C, Zhang Y, Yang F, Yang M, Yang Y, Li J, Huang X, Wu H, Fu Z, Li W, Yin Y. Relationship between tRNA-derived fragments and human cancers. Int J Cancer 2020; 147(11): 3007–3018

    Article  CAS  PubMed  Google Scholar 

  17. Zhu L, Ge J, Li T, Shen Y, Guo J. tRNA-derived fragments and tRNA halves: the new players in cancers. Cancer Lett 2019; 452: 31–37

    Article  CAS  PubMed  Google Scholar 

  18. Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res 2020; 48(17): 9433–9448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46(10): 790–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 2010; 285(14): 10959–10968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lyons SM, Achorn C, Kedersha NL, Anderson PJ, Ivanov P. YB-1 regulates tiRNA-induced stress granule formation but not translational repression. Nucleic Acids Res 2016; 44(14): 6949–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim HK, Fuchs G, Wang S, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J, Chu K, Zhang F, Chua MS, So S, Zhang QC, Sarnow P, Kay MA. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 2017; 552(7683): 57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geslain R, Pan T. Functional analysis of human tRNA isodecoders. J Mol Biol 2010; 396(3): 821–831

    Article  CAS  PubMed  Google Scholar 

  24. Goodenbour JM, Pan T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res 2006; 34(21): 6137–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar P, Mudunuri SB, Anaya J, Dutta A. tRFdb: a database for transfer RNA fragments. Nucleic Acids Res 2015; 43(D1): D141–D145

    Article  CAS  PubMed  Google Scholar 

  26. Pliatsika V, Loher P, Magee R, Telonis AG, Londin E, Shigematsu M, Kirino Y, Rigoutsos I. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46(D1): D152–D159

    Article  CAS  PubMed  Google Scholar 

  27. Hinnebusch AG. The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 2014; 83(1): 779–812

    Article  CAS  PubMed  Google Scholar 

  28. Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11(2): 113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, Mavrakis KJ, Jiang M, Roderick JE, Van der Meulen J, Schatz JH, Rodrigo CM, Zhao C, Rondou P, de Stanchina E, Teruya-Feldstein J, Kelliher MA, Speleman F, Porco JAJr, Pelletier J, Rätsch G, Wendel HG. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 2014; 513(7516): 65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K, Miller J, Gräf S, Provenzano E, Blows F, Pharoah P, Caldas C, Le Quesne J. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis 2015; 6(1): e1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh K, Lin J, Lecomte N, Mohan P, Gokce A, Sanghvi VR, Jiang M, Grbovic-Huezo O, Burčul A, Stark SG, Romesser PB, Chang Q, Melchor JP, Beyer RK, Duggan M, Fukase Y, Yang G, Ouerfelli O, Viale A, de Stanchina E, Stamford AW, Meinke PT, Rätsch G, Leach SD, Ouyang Z, Wendel HG. Targeting eIF4A-dependent translation of KRAS signaling molecules. Cancer Res 2021; 81(8): 2002–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iwasaki S, Iwasaki W, Takahashi M, Sakamoto A, Watanabe C, Shichino Y, Floor SN, Fujiwara K, Mito M, Dodo K, Sodeoka M, Imataka H, Honma T, Fukuzawa K, Ito T, Ingolia NT. The translation inhibitor rocaglamide targets a bimolecular cavity between eIF4A and polypurine RNA. Mol Cell 2019; 73(4): 738–748.e9

    Article  CAS  PubMed  Google Scholar 

  33. Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34(suppl_2): W676–W682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, Thorgeirsson SS. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130(4): 1117–1128

    Article  CAS  PubMed  Google Scholar 

  35. Delire B, Stärkel P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur J Clin Invest 2015; 45(6): 609–623

    Article  CAS  PubMed  Google Scholar 

  36. Ranjpour M, Wajid S, Jain SK. Elevated expression of A-Raf and FA2H in hepatocellular carcinoma is associated with lipid metabolism dysregulation and cancer progression. Anticancer Agents Med Chem 2019; 19(2): 236–247

    Article  CAS  PubMed  Google Scholar 

  37. Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 2020; 13(1): 121

    Article  PubMed  PubMed Central  Google Scholar 

  38. Han L, Lai H, Yang Y, Hu J, Li Z, Ma B, Xu W, Liu W, Wei W, Li D, Wang Y, Zhai Q, Ji Q, Liao T. A 5′-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J Exp Clin Cancer Res 2021; 40(1): 222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao XH, Guan BJ, Yuan Y, Jankowsky E, Feng Z, Hu GF, Pusztai-Carey M, Gorla M, Sepuri NB, Pan T, Hatzoglou M. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 2014; 34(13): 2450–2463

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 2014; 12(1): 78

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kumar P, Kuscu C, Dutta A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41(8): 679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guan L, Karaiskos S, Grigoriev A. Inferring targeting modes of Argonaute-loaded tRNA fragments. RNA Biol 2020; 17(8): 1070–1080

    Article  CAS  PubMed  Google Scholar 

  43. Venkatesh T, Suresh PS, Tsutsumi R. tRFs: miRNAs in disguise. Gene 2016; 579(2): 133–138

    Article  CAS  PubMed  Google Scholar 

  44. Lyons SM, Kharel P, Akiyama Y, Ojha S, Dave D, Tsvetkov V, Merrick W, Ivanov P, Anderson P. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res 2020; 48(11): 6223–6233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ivanov P, O’Day E, Emara MM, Wagner G, Lieberman J, Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci USA 2014; 111(51): 18201–18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lyons SM, Gudanis D, Coyne SM, Gdaniec Z, Ivanov P. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat Commun 2017; 8(1): 1127

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nguyen TM, Kabotyanski EB, Dou Y, Reineke LC, Zhang P, Zhang XHF, Malovannaya A, Jung SY, Mo Q, Roarty KP, Chen Y, Zhang B, Neilson JR, Lloyd RE, Perou CM, Ellis MJ, Rosen JM. FGFR1-activated translation of WNT pathway components with structured 5′ UTRs is vulnerable to inhibition of EIF4A-dependent translation initiation. Cancer Res 2018; 78(15): 4229–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raza F, Waldron JA, Quesne JL. Translational dysregulation in cancer: eIF4A isoforms and sequence determinants of eIF4A dependence. Biochem Soc Trans 2015; 43(6): 1227–1233

    Article  CAS  PubMed  Google Scholar 

  49. Biffi G, Di Antonio M, Tannahill D, Balasubramanian S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem 2014; 6(1): 75–80

    Article  CAS  PubMed  Google Scholar 

  50. Kwok CK, Merrick CJ. G-Quadruplexes: prediction, characterization, and biological application. Trends Biotechnol 2017; 35(10): 997–1013

    Article  CAS  PubMed  Google Scholar 

  51. Zhan S, Yang P, Zhou S, Xu Y, Xu R, Liang G, Zhang C, Chen X, Yang L, Jin F, Wang Y. Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis. Front Med 2022; 16(2): 216–226

    Article  PubMed  Google Scholar 

  52. Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D, Xu X, Zuo Y, Zhao Y, Wei YQ, Wei XW, Peng Y. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer 2019; 18(1): 74

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mo D, Jiang P, Yang Y, Mao X, Tan X, Tang X, Wei D, Li B, Wang X, Tang L, Yan F. A tRNA fragment, 5′-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett 2019; 457: 60–73

    Article  CAS  PubMed  Google Scholar 

  54. Wu Y, Yang X, Jiang G, Zhang H, Ge L, Chen F, Li J, Liu H, Wang H. 5′-tRF-GlyGCC: a tRNA-derived small RNA as a novel biomarker for colorectal cancer diagnosis. Genome Med 2021; 13(1): 20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol 2020; 13(1): 121

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was generously supported by the National Natural Science Foundation of China (Nos. 82072650 and 81902405), Key Research and Development Program of Zhejiang Province (No. 2021C03121), 2019 Liver Cancer Diagnosis and Treatment Communication Fund (No. CXPJJH11900009-12) and Grant from Health Commission of Zhejiang Province (No. JBZX-202004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Wang.

Ethics declarations

Chengdong Wu, Dekai Liu, Lufei Zhang, Jingjie Wang, Yuan Ding, Zhongquan Sun, and Weilin Wang declare that they have no conflicts of interest. All the procedure of the study was approved by Internal Review and Ethic Boards at the Second Affiliated Hospital of Zhejiang University School of Medicine. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Liu, D., Zhang, L. et al. 5′-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I. Front. Med. 17, 476–492 (2023). https://doi.org/10.1007/s11684-022-0966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-022-0966-6

Keywords

Navigation