Skip to main content
Log in

Applications of atomic force microscopy in immunology

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller CJ, Davidson LA. The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 2013; 14 (10): 733–744

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohammadi H, Sahai E. Mechanisms and impact of altered tumour mechanics. Nat Cell Biol 2018; 20(7): 766–774

    CAS  PubMed  Google Scholar 

  3. Roca-Cusachs P, Conte V, Trepat X. Quantifying forces in cell biology. Nat Cell Biol 2017; 19(7): 742–751

    CAS  PubMed  Google Scholar 

  4. Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 2005; 59(1–6): 1–152

    CAS  Google Scholar 

  5. Chang KC, Chiang YW, Yang CH, Liou JW. Atomic force microscopy in biology and biomedicine. Tzu Chi Medical J 2012; 24(4): 162–169

    Google Scholar 

  6. Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M. Recent progressive use of atomic force microscopy in biomedical applications. Trends Analyt Chem 2016; 80: 96–111

    CAS  Google Scholar 

  7. Wu Y, Cai J, Cheng L, Xu Y, Lin Z, Wang C, Chen Y. Atomic force microscope tracking observation of Chinese hamster ovary cell mitosis. Micron 2006; 37(2): 139–145

    PubMed  Google Scholar 

  8. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature 2010; 463(7280): 485–492

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US. Dividing cells regulate their lipid composition and localization. Cell 2014; 156(3): 428–439

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 2014; 6(5): 371–388

    PubMed  PubMed Central  Google Scholar 

  11. Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 2008; 456(1): 13–27

    CAS  PubMed  Google Scholar 

  12. Braet F, Taatjes DJ, Wisse E. Probing the unseen structure and function of liver cells through atomic force microscopy. Semin Cell Dev Biol 2018; 73: 13–30

    CAS  PubMed  Google Scholar 

  13. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 2013; 15(6): 637–646

    CAS  PubMed  Google Scholar 

  14. Wang N, Zhang M, Chang Y, Niu N, Guan Y, Ye M, Li C, Tang J. Directly observing alterations of morphology and mechanical properties of living cancer cells with atomic force microscopy. Talanta 2019; 191: 461–468

    CAS  PubMed  Google Scholar 

  15. Alcaraz J, Otero J, Jorba I, Navajas D. Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol 2018; 73: 71–81

    CAS  PubMed  Google Scholar 

  16. Harris MJ, Wirtz D, Wu PH. Dissecting cellular mechanics: Implications for aging, cancer, and immunity. Semin Cell Dev Biol 2019; 93: 16–25

    PubMed  Google Scholar 

  17. Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, Oria R, Kechagia JZ, Rico-Lastres P, Le Roux AL, Shanahan CM, Trepat X, Navajas D, Garcia-Manyes S, Roca-Cusachs P. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 2017; 171(6): 1397–1410.e14

    CAS  PubMed  Google Scholar 

  18. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018; 557(7705): 335–342

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Krieg M, Dunn AR, Goodman MB. Mechanical control of the sense of touch by β-spectrin. Nat Cell Biol 2014; 16(3): 224–233

    CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Kirat-Chatel S, Dufrêne YF. Nanoscale imaging of the Candida-macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano 2012; 6(12): 10792–10799

    CAS  PubMed  Google Scholar 

  21. Pageon SV, Govendir MA, Kempe D, Biro M. Mechanoimmunology: molecular-scale forces govern immune cell functions. Mol Biol Cell 2018; 29(16): 1919–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 2020; 17(1): 1–12

    CAS  PubMed  Google Scholar 

  23. Kim YB, Ahn YH, Jung JH, Lee YJ, Lee JH, Kang JL. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cell Mol Immunol 2019; 16(11): 851–867

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14(12): 963–975

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol 2017; 14(1): 80–89

    CAS  PubMed  Google Scholar 

  26. Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 2019; 20 (8): 457–473

    CAS  PubMed  Google Scholar 

  27. Hosseini BH, Louban I, Djandji D, Wabnitz GH, Deeg J, Bulbuc N, Samstag Y, Gunzer M, Spatz JP, Hämmerling GJ. Immune synapse formation determines interaction forces between Tcells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci USA 2009; 106(42): 17852–17857

    CAS  PubMed  Google Scholar 

  28. Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW. Real-time visualization of perforin nanopore assembly. Nat Nanotechnol 2017; 12(5): 467–473

    CAS  PubMed  Google Scholar 

  29. Liu Y, Zhang T, Zhou Y, Li J, Liang X, Zhou N, Lv J, Xie J, Cheng F, Fang Y, Gao Y, Wang N, Huang B. Visualization of perforin/gasdermin/complement-formed pores in real cell membranes using atomic force microscopy. Cell Mol Immunol 2019; 16(6): 611–620

    CAS  PubMed  Google Scholar 

  30. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009; 324 (5935): 1673–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu PH, Aroush DRB, Asnacios A, Chen WC, Dokukin ME, Doss BL, Durand-Smet P, Ekpenyong A, Guck J, Guz NV, Janmey PA, Lee JSH, Moore NM, Ott A, Poh YC, Ros R, Sander M, Sokolov I, Staunton JR, Wang N, Whyte G, Wirtz D. A comparison of methods to assess cell mechanical properties. Nat Methods 2018; 15(7): 491–498

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li M, Dang D, Liu L, Xi N, Wang Y. Atomic force microscopy in characterizing cell mechanics for biomedical applications: a review. IEEE Trans Nanobioscience 2017; 16(6): 523–540

    PubMed  Google Scholar 

  33. Zhang Y, Wei F, Poh YC, Jia Q, Chen J, Chen J, Luo J, Yao W, Zhou W, Huang W, Yang F, Zhang Y, Wang N. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells. Nat Protoc 2017; 12(7): 1437–1450

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016; 35(16): 1766–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pilling M, Gardner P. Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chem Soc Rev 2016; 45(7): 1935–1957

    CAS  PubMed  Google Scholar 

  36. Cazaux S, Sadoun A, Biarnes-Pelicot M, Martinez M, Obeid S, Bongrand P, Limozin L, Puech PH. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy 2016; 160: 168–181

    CAS  PubMed  Google Scholar 

  37. Knoops B, Becker S, Poncin MA, Glibert J, Derclaye S, Clippe A, Alsteens D. Specific interactions measured by AFM on living cells between peroxiredoxin-5 and TLR4: relevance for mechanisms of innate immunity. Cell Chem Biol 2018; 25(5): 550–559.e3

    CAS  PubMed  Google Scholar 

  38. Camesano TA, Liu Y, Datta M. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv Water Resour 2007; 30(6–7): 1470–1491

    CAS  Google Scholar 

  39. Rana MS, Pota HR, Petersen IR. Performance of sinusoidal scanning with MPC in AFM imaging. IEEE/ASME Trans Mechatron 2015; 20(1): 73–83

    Google Scholar 

  40. Rana MS, Pota HR, Petersen IR. Spiral scanning with improved control for faster imaging of AFM. IEEE Trans NanoTechnol 2014; 13(3): 541–550

    CAS  Google Scholar 

  41. Arildsen T, Oxvig CS, Pedersen PS, Ostergaard J, Larsen T. Reconstruction algorithms in undersampled AFM imaging. IEEE J Sel Top Signal Process 2016; 10(1): 31–46

    Google Scholar 

  42. Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J Struct Biol 2012; 178(1): 1–7

    CAS  PubMed  Google Scholar 

  43. Newton R, Müller DJ. Cells stiffen for cytokines. Cell Chem Biol 2018; 25(5): 495–496

    CAS  PubMed  Google Scholar 

  44. Salapaka SM, Ramamoorthy A, Salapaka MV. AFM imaging? Reliable or not?: validation and verification of images in atomic force microscopy. Control Systems IEEE 2013; 33(6): 106–118

    Google Scholar 

  45. Smith DA, Robinson C, Kirkham J, Zhang J, Wallwork ML. Chemical force spectroscopy and imaging. Rev Anal Chem 2001; 20(1): 1–26

    CAS  Google Scholar 

  46. Zhang X, Wojcikiewicz EP, Moy VT. Dynamic adhesion of T lymphocytes to endothelial cells revealed by atomic force microscopy. Exp Biol Med (Maywood) 2006; 231(8): 1306–1312

    CAS  Google Scholar 

  47. Drew ME, Konicek AR, Jaroenapibal P, Carpick RW, Yamakoshi Y. Nanocrystalline diamond AFM tips for chemical force spectroscopy: fabrication and photochemical functionalization. J Mater Chem B Mater Biol Med 2012; 22(25): 12682–12688

    CAS  Google Scholar 

  48. Hyonchol K, Hideo A, Toshiya O and ATsushi I. Quantification of cell adhesion interactions by AFM: effects of LPS/PMA on the adhesion of C6 glioma cell to collagen type I. Appl Surf Sci 2002; 188(3–4): 493–498

    Google Scholar 

  49. Hu KH, Butte MJ. T cell activation requires force generation. J Cell Biol 2016; 213(5): 535–542

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nikkhah M, Strobl JS, Schmelz EM, Agah M. Evaluation of the influence of growth medium composition on cell elasticity. J Biomech 2011; 44(4): 762–766

    PubMed  Google Scholar 

  51. Neubert E, Meyer D, Rocca F, Günay G, Kwaczala-Tessmann A, Grandke J, Senger-Sander S, Geisler C, Egner A, Schön MP, Erpenbeck L, Kruss S. Chromatin swelling drives neutrophil extracellular trap release. Nat Commun 2018; 9(1): 3767

    PubMed  PubMed Central  Google Scholar 

  52. Sheetz MP. Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2001; 2(5): 392–396

    CAS  PubMed  Google Scholar 

  53. Diz-Muñoz A, Fletcher DA, Weiner OD. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 2013; 23(2): 47–53

    PubMed  Google Scholar 

  54. Maridonneau-Parini I. Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration. Immunol Rev 2014; 262(1): 216–231

    PubMed  Google Scholar 

  55. Bitler A, Dover R, Shai Y. Fractal properties of macrophage membrane studied by AFM. Micron 2012; 43(12): 1239–1245

    CAS  PubMed  Google Scholar 

  56. Labernadie A, Bouissou A, Delobelle P, Balor S, Voituriez R, Proag A, Fourquaux I, Thibault C, Vieu C, Poincloux R, Charrière GM, Maridonneau-Parini I. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat Commun 2014; 5(1): 5343

    CAS  PubMed  Google Scholar 

  57. Souza ST, Agra LC, Santos CEA, Barreto E, Hickmann JM, Fonseca EJS. Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. Eur Biophys J 2014; 43(12): 573–579

    CAS  PubMed  Google Scholar 

  58. Labernadie A, Thibault C, Vieu C, Maridonneau-Parini I, Charriére GM. Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci USA 2010; 107(49): 21016–21021

    CAS  PubMed  Google Scholar 

  59. Lowin B, Hahne M, Mattmann C, Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370(6491): 650–652

    CAS  PubMed  Google Scholar 

  60. Kägi D, Vignaux F, Ledermann B, Bürki K, Depraetere V, Nagata S, Hengartner H, Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265 (5171): 528–530

    PubMed  Google Scholar 

  61. Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforindeficient mice. Nature 1994; 369(6475): 31–37

    PubMed  Google Scholar 

  62. Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJP, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 2009; 30(5): 684–695

    CAS  PubMed  Google Scholar 

  63. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016; 535(7610): 111–116

    CAS  PubMed  Google Scholar 

  64. Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2014; 505(7481): 103–107

    PubMed  Google Scholar 

  65. Newton R, Delguste M, Koehler M, Dumitru AC, Laskowski PR, Müller DJ, Alsteens D. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces. Nat Protoc 2017; 12(11): 2275–2292

    CAS  PubMed  Google Scholar 

  66. Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 2010; 468(7322): 447–451

    CAS  PubMed  Google Scholar 

  67. Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015; 517(7534): 311–320

    CAS  PubMed  Google Scholar 

  68. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, Lill JR, Roose-Girma M, Warming S, Solon M, Ngu H, Webster JD, Dixit VM. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 2016; 540(7631): 129–133

    CAS  PubMed  Google Scholar 

  69. Eaton P, do Amaral CP, Couto SCP, Oliveira MS, Vasconcelos AG, Borges TKS, Kückelhaus SAS, Leite JRSA, Muniz-Junqueira MI. Atomic force microscopy is a potent technique to study eosinophil activation. Front Physiol 2019; 10: 1261

    PubMed  PubMed Central  Google Scholar 

  70. Shen X, Gu H, Ma P, Luo Z, Li M, Hu Y, Cai K. Minocyclineincorporated multilayers on titanium substrates for simultaneous regulation of MSCs and macrophages. Mater Sci Eng C 2019; 102: 696–707

    CAS  Google Scholar 

  71. Pi J, Cai H, Yang F, Jin H, Liu J, Yang P, Cai J. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages. Anal Bioanal Chem 2016; 408(1): 165–176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81788101) and the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (CAMS-I2M) (No. 2016-I2M-1-007). This work was partially supported by the project of “Research on the Passive Micro Sensor Components and Systems Applied in SF6 Detection” (No. 54681618002400k0000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Huang.

Ethics declarations

Jiping Li, Yuying Liu, Yidong Yuan, and Bo Huang declared no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, Y., Yuan, Y. et al. Applications of atomic force microscopy in immunology. Front. Med. 15, 43–52 (2021). https://doi.org/10.1007/s11684-020-0769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-020-0769-6

Keywords

Navigation